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Preface

Throughout my professional career I have been fascinated by problems involv-
ing electrical noise. In this book I would like to describe aspects of electrical
noise somewhat in the manner of a Russian matryoshka doll, in which each
shell contains a different doll, alluding to deeper and deeper meanings hidden
inside as outer appearances are peeled away.

Let us look at some dictionary definitions of noise. Surprisingly, the origin
of the word in the English language is unknown. The Oxford Universal Dic-
tionary (1955) has the following definition: "Noise. 1. loud outcry, clamour
or shouting; din or disturbance; common talk, rumour, evil report, scandal -
1734. A loud or harsh sound of any kind; a din ... An agreeable or melodious
sound. Now rare, ME. A company or band of musicians."

This is not a helpful definition of the technical meaning of noise. The Sup-
plement to the Oxford English Dictionary (1989) lists the following: "Noise.
7. In scientific use, a collective term (used without the indefinite article) for:
fluctuations or disturbances (usu. irregular) which are not part of a wanted
signal, or which interfere with its intelligibility or usefulness."

The last definition is an appropriate one and relates to the work of Prof.
Norbert Wiener who developed the mathematics of statistical functions in
the 1930s and 1940s. To this day I am awed by the power of mathemati-
cal prediction of averages of outcomes of statistically fluctuating quantities.
These predictions extend to the theory of and experiments on noise.

Let us look at the interpretation in other languages of the word used for
the technical term "noise".

In German Rauschen: rush, rustle, murmur, roar, thunder, (poet.)
sough.

In Russian sham: noise, hubbub, uproar; vetra, voln: sound of
wind, waves.

In French bruit: noise, din, racket, uproar, commotion, clamor;
(fig.) tumult, sedition; fame, renown, reputation; beau-
coup de bruit pour rien, much ado about nothing.

In Italian rumore: noise, din, clamor, outcry, uproar; rumor.

It is interesting how different languages attach different meanings to noise.
The German and Russian origins are onomatopoetic, simulating the sound of
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rushing water or rustling of leaves, and do not necessarily possess the conno-
tation of unpleasantness. The French and Italian words have more abstract
meanings. Surprisingly, in French, it describes characteristics of persons who
stick out, are famous. In Italian it is clearly related to the word "rumor". The
etymology of the word "noise" is a glimpse of the complexity and subtlety of
the meanings attached to words by different cultures. In the world of physics
and technology, noise is equally multifaceted.

A fascinating fact is that the ear is adjusted to have the highest al-
lowed sensitivity without being disturbed by one of the fundamental sources
of noise, thermal noise. Thermal noise is the agitation experienced by the
molecules in gases, liquids, and solids at all temperatures above absolute
zero (on the Kelvin scale). The molecules of air bounce around and hit the
eardrums in a continuous pelting "rain" of particles. If the ear were sensitive
to that bombardment, one would hear a continuous hissing noise comparable
to that of the noise of a radio tuned between stations with the volume turned
up. A simple computation finds that the power impinging upon the ear from
this thermal noise is of the order of 0.3 x 10-12 W, a third of the threshold
of hearing [1], a rather remarkable fact.

Many of us have experienced the strange sensation that is produced when
a large shell is held to the ear. Popularly this is known as "hearing the ocean".
In fact, this effect is due to the noise of the air particles impinging upon the
ear, enhanced by the shell acting as a resonator. Thus, even a normal ear can
hear the air particles impinging upon the ear when the effect is enhanced by
some means. Later in this book we shall learn how resonators enhance the
spectrum of noise near their resonance frequency.

My interest in noise, reflected in the content of this book, was and is
mainly in electrical and optical noise. It is not hard to understand the ori-
gin of electrical noise, at least the one related to the agitation of particles.
Particles with charge are surrounded by fields which, in turn, produce charge
accumulation (of opposite sign) in surrounding electrodes. As the particles
bounce around when driven by thermal effects or quantum effects, the charges
in the electrodes are dragged along and produce spurious currents, noise cur-
rents.

Electrical communications engineers worry about noise because they have
to discern signals in the presence of such background noise. In all cases
in which the background noise is worrisome, the signals are weak so that
amplifiers are needed to raise their power to detectable levels. Amplifiers
add noise of their own to the background noise. The ultimate source of low-
frequency (including microwave) amplifier noise is the "graininess of the elec-
trical charge". This fact was recognized in its full significance by Schottky in
his classic paper in 1918 [2]. 1 quote from Schottky (my English translation):
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Cascading of vacuum tube amplifiers has made possible in recent
years the detection and measurement of alternating currents of
exceedingly small amplitude. Many technical tasks have thereby
realized a sudden benefit, but also a new field of research has been
opened up. The new amplifying circuits have the same impact on
electrical studies as the microscope has had for optics. Because no
clear limit has appeared to date on the achievable amplification,
one could hope to advance to the infinitesimally small by proper
shielding, interference-free layouts, etc. of the amplifying circuits;
the dream of "hearing the grass grow" has appeared achievable to
mankind.

This is an allusion by Schottky to the sensory power ascribed by the brothers
Grimm fairy tales to particularly endowed individuals. In the sequel he shows
that the dream will not come true and I quote:

The first insurmountable obstacle is provided, remarkably, by the
size of the elementary quantum of electricity (the charge of the
electron).

Schottky wrote his paper a decade before the formulation of the uncer-
tainty principle of Heisenberg. Some of the noise generated in amplifiers and
recognized by Schottky can be controlled. The amplifiers can be cooled or
refrigerated. The shot noise can be reduced by utilizing the mutual repulsion
among the negatively charged electrons. Schottky was careful to point out in
his paper that, with the current densities achievable in his day, such repulsion
could be ignored. In the intervening 75 years a great deal has happened and
this research led to the development of ultra-low-noise amplifiers.

The fundamental limit of the noise performance of amplifiers is ultimately
determined by quantum mechanics. This was the reason why I studied optical
amplification, at frequencies at which the quantum effects of the electromag-
netic field are observable, and at which quantum effects are, fundamentally,
responsible for the noise performance of optical amplifiers. This very prop-
erty of optical amplifiers makes them ideal models of quantum measurement
apparatus and permits study of the theory of quantum measurement with the
aid of simple optical measurement devices. This book thus spans the range
from microwave propagation and amplification to optical propagation and
amplification, all the way to issues of the theory of quantum measurement.

A book based on the work of 45 years clearly rests on collaboration
with many individuals. Among those I should mention with gratitude are
the late Prof. Richard B. Adler, Charles Freed, Dr. James Mullen, Prof. Y.
Yamamoto, Dr. J. P. Gordon, and many past and present students. Among
these, credit goes to Patrick Chou, John Fini, Leaf Jiang, Thomas Murphy,
Steve Patterson, Michael Watts, William Wong, and Charles Yu for the care-
ful reading of the manuscript that led to many corrections and suggestions
for improvements.
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Introduction

Quantitatively, the noise of a linear amplifier can be described as the noise
power added by the amplifier to the signal power in the process of signal
amplification. It has been found convenient to refer both the noise power and
the signal power to the input of the amplifier, before amplification, because
then one can make a direct comparison between the amplifier noise and the
thermal noise that accompanies the signal. We have gone so far as to ex-
press the noise ascribed to the amplifier in Kelvin, namely, in terms of the
thermal power that would be emitted by a thermal source if it were at this
temperature.

In the 1950s, Penzias and Wilson were readying a microwave antenna for
satellite communications using the latest in ultra-low-noise amplifiers. They
pointed their antenna in various directions of the sky, away from the high
emitters of noise such as the sun and some interstellar radio sources, and
found a background noise that could not be accounted for by the noise in the
amplifier. They had discovered the 3.5 K background radiation of interstellar
space. (This discovery decided in favor of the big-bang theory of the origin of
the universe over a rival cosmological theory.) The background noise observed
by Penzias and Wilson and quoted in the book The First Three Minutes by
Steven Weinberg [3] is roughly 1/100 of room temperature. They had to have
an excellent understanding of the noise in their receiver to attribute the slight
discrepancy in the observed noise power from the output of their amplifier
to an unknown source of noise. Professor Bernard Burke of the MIT physics
department was made aware of their discovery and brought them into contact
with Prof. R. H. Dicke of Princeton, who had indicated that the background
temperature of the universe should be of this magnitude if the universe indeed
started from the initial big bang in a very small volume and expanded ever
since. One may understand this in a somewhat simplified form as a decrease
of the frequency and energy density of the original high-temperature, high-
frequency electromagnetic waves as they extended over a larger and larger
volume. The same would happen to the sound frequency and energy in an
organ pipe in which the ends were moved continually farther and farther
apart.

It is indeed remarkable that a purely technical accomplishment - the
design of low-noise amplifiers, the construction of a satellite communications
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link, and a very good understanding of the noise in amplifiers - has provided
the evidence for one of the theories of the origins of the universe. The existence
of the background radiation is now well established. The number 3.5 K has
been modified to 2.76 K.

At the very same time as these developments were taking place some of us
practitioners were asking ourselves whether there are any fundamental lower
bounds to the noise performance of an amplifier. Offhand, one might expect
that the minimum amount of noise added to the signal could not be lower
than the thermal background noise associated with the temperature at which
the amplifier operates. But this is not the case. There is ample evidence that
amplifiers can do better. Indeed, refrigerators produce locally lower tempera-
tures than the environment in which they operate and amplifiers can perform
the same feat. Further, truly super-deluxe amplifiers include refrigeration to
help them reduce their noise. It looks as if there is no lower limit to the noise
of an amplifier, if one is willing to pay the price of the refrigeration. Even
the shot noise, which is fundamental under random emission, can be reduced
by active control, at low frequencies. As the frequencies become higher and
higher, such control becomes not only physically more difficult, but impossi-
ble in a more fundamental way. The intrinsic noise has a fundamental lower
bound and that fundamental bound is of quantum mechanical origin. The
noise of fundamental origin is proportional to the frequency of the amplifier.
What makes laser noise so interesting is that it is truly fundamental; because
of its enormously high level it is detectable. Before we bring up this point in
more detail, let us return to noise radiation, namely the kind of radiation left
over by the big bang.

Whereas it is rather clear that bouncing charged particles cause noise, why
should there be an excitation of free space? The reason for its existence is
the following. Free space can transmit electromagnetic radiation. Thermally
agitated charged particles excite electromagnetic radiation. The radiation
in turn can transfer its energy to the particles. Thus, free space containing
charged particles at any temperature must contain radiation. This radiation
has a very specific intensity if it is at thermal equilibrium with the thermally
agitated particles, gaining as much energy per unit time from the charged
particles owing to their radiation as it is losing energy per unit time to the
charged particles. This radiation obeys laws very similar to the acoustic ra-
diation caused by thermal noise.

An electromagnetic mode of frequency v can carry energy only in units
of hv, where h is Planck's constant; h = 6.626 x 10-34 J S. Quantum effects
predominate over thermal effects when

by > kT, (0.1)

where k is Boltzmann's constant, k = 1.38 x 10-23 J/K. For T = 290 K, room
temperature, the crossover occurs in the far-infrared regime at a frequency
v = 6 x 1012 Hz, that is, much higher than conventional microwave frequen-
cies. At frequencies below the limit imposed by (0.1), shot noise, thermal
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noise and related sources of noise predominate, at higher frequencies quan-
tum noise is predominant. Quantum noise has its origin in the graininess of
electromagnetic radiation, somewhat as shot noise has its origin in the graini-
ness of electric charge. According to quantum theory, electromagnetic energy
is a phenomenon that can be both particle-like and wave-like, the principle of
duality. Each particle, i.e. each photon, carries an energy hv, this energy be-
ing higher the higher the frequency v. For a given amount of power received,
the number of particles received decreases with increasing frequency, making
their graininess more noticeable. For this very reason, amplifiers of optical
radiation are much noisier than amplifiers of microwave or lower-frequency
radiation.

In 1973 A. Hasegawa and G. Tappert at Bell Telephone Laboratories sug-
gested [4] that optical fibers could propagate solitons. An optical fiber made
of silicon dioxide glass is dispersive in that the velocities of travel of sinusoidal
optical waves of different wavelengths are different. It is nonlinear owing to
the so-called Kerr effect: the index of refraction of the optical material de-
pends upon the intensity of the optical wave. This effect is named after John
Kerr, like Maxwell a Scot. (It turns out that W. C. Roentgen of X-ray fame
also discovered the effect, but Kerr published first.)

Optical pulses that maintain their shape as they propagate (solitons) can
form in glass fibers if the dispersion and Kerr effect balance. The Kerr effect
is called positive if the index increases with increasing intensity, negative if
it decreases with increasing intensity. The dispersion is called positive if the
velocity increases with wavelength A, negative if it changes in the opposite di-
rection. The Kerr effect in glass is positive. Negative dispersion and a positive
Kerr effect can balance each other to allow for soliton propagation. Hence,
to see solitons in fibers one must excite them at wavelengths at which silicon
dioxide has negative dispersion. This is the case for wavelengths longer than
1.3 µm (although fiber dispersion can be affected by core-cladding design).
Optical fibers have one other remarkable property: at a wavelength of 1.5 µm
they have extremely low loss; they are extraordinarily transparent. Light at
this wavelength loses only a few percent of its power when propagating over a
1 km fiber. For this reason, optical fibers are a particularly felicitous medium
for signal propagation.

It was the stability of the soliton pulses that motivated Hasegawa in 1984
to propose long-distance optical communications using soliton pulses [5]. The
signal would be digital, made up of pulses (solitons) and empty time intervals,
symbolizing a string of ones and zeros. Over a trans-Atlantic distance of 4800
km, the optical signal would have to be amplified to compensate for the loss.

At the present time, most practical amplifiers for fiber transmission are
made of rare-earth-doped fibers (the rare earth being erbium) "pumped" by
a source at a wavelength in an absorption band of the dopant. The optical
pumping is done by light from an optical source, a laser with photons of en-
ergy hvr,. The dopant atoms (erbium in the case of the fiber) absorb the pump
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photons and are excited to higher-lying energy levels which decay rapidly and
nonradiatively to the upper laser level. When an atom in the upper laser level
is stimulated by signal photons of energy hv, the atom makes a transition
from the upper laser level to the lower laser level, emitting a photon. This
so-called stimulated emission increases the signal, i.e. amplifies it.

Stimulated emission is not the only radiation emitted by the excited
atoms. As already pointed out by Einstein, an excited atom eventually decays
radiatively to a lower-lying level by spontaneous emission even in the absence
of stimulating radiation. This emission is independent of the stimulated emis-
sion. It masks the signal and is experienced as "noise" after detection.

At the time of Hasegawa's proposal, long-distance optical signal trans-
mission was more complicated: the signal (pulse or no pulse) was detected,
regenerated and reemitted in so-called "repeaters" spaced every 100 km or so.
In this way the intervening loss was compensated but, equally importantly,
the noise added to the signal by random disturbances was removed. Digital
signals transmitted via repeaters were thus particularly immune to noise. One
disadvantage of this robust scheme of communications in transoceanic cable
transmission is that, once the cable has been laid, the format of transmission
cannot be changed, because the repeaters are designed to handle only one
particular format. Hasegawa's bold move would do away with repeaters and
replace them with simple optical amplifiers. Once a cable of this type is in-
stalled, it is not tied to a particular signaling format. The pulse rate could be
changed at the transmission end and the receiver at the reception end, but
no changes would have to be made in the cable and amplifier "pods" at the
bottom of the ocean.

The implementation of Hasegawa's idea took some time. The first ques-
tion was whether the solitons propagating along a fiber would be sufficiently
immune to the spontaneous-emission noise "added" in the optical amplifiers.
In 1984, while on sabbatical at AT&T Bell Laboratories, the author, with J.
P. Gordon, showed [6] that the noise in the amplifiers would change the carrier
wavelength of the solitons in a random way. Since the speed of the solitons is
a function of the carrier wavelength, the arrival time of the pulses would ac-
quire a random component; the solitons may end up in the wrong time slots,
causing errors [6]. This effect is now known as the Gordon-Haus effect. With
the parameters of the fiber proposed by Hasegawa, his "repeaterless" scheme
could not have spanned the Atlantic. The analysis clearly demonstrated the
dependence of the effect on the parameters of the fiber. But with a redesign
of the fiber, the Atlantic could be spanned!

L. F. Mollenauer and his group at AT&T Bell Laboratories [7] made pio-
neering experiments in which they verified many of the predicted properties
of soliton propagation. Since a fiber 4800 km long would cost of the order
of $100 million, they used a loop of the order of 100 km in length, with
three amplifiers, in which they launched a pseudorandom sequence of soli-
tons (ones) and empty intervals (zeros) and recirculated them as many times
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as they wished, thus simulating long distance propagation. They confirmed
the Gordon-Haus effect.

Noise is a familiar phenomenon accompanying any measurement. The
numerical values of the quantity measured differ from measurement to mea-
surement. In undertaking a measurement, the experimentalist starts from the
assumption that a sequence of measurements on identically prepared systems
will arrive at a set of outcomes that will have an average, the value of which
will be identified with the average value of the quantity measured. (This as-
sumes of course that the measurement is not distorting the average value as
often happens when the measurement apparatus is nonlinear.) Measurements
in quantum theory fit into this general view of measurement. The ideal ap-
paratus of quantum measurements does not have nonlinear distortions; the
average value of the measurements on an observable is indeed its expecta-
tion value. The individual outcomes of the measurements, in general, exhibit
scatter, just as they do for a classical signal in the presence of noise

Bell of "Bell's inequality" fame was disturbed by the interpretation of
a quantum measurement, in particular by the von Neumann postulate by
which every measurement projects the wave function of the observable into
an eigenstate of the measurement apparatus [8]. He saw the postulate as a
graft onto the standard quantum description. He considered quantum theory
incomplete, like Einstein before him, but in a different sense. As an example
of a complete theory, he cited Maxwell's theory of electromagnetism. The
equations that describe the electromagnetic field also contain in them the
rules for the measurement of the field. In contrast, the von Neumann postulate
has to be invoked in interpreting the outcome of a quantum measurement.

In the last chapter in this book, we attack the problem of quantum mea-
surements in the optical domain, since quantum formalisms for optical ap-
paratus will be well developed at that point. We shall discuss "quantum
nondemolition" (QND) measurements that leave the measured observable
unchanged. A QND measurement can be used to "derive" the von Neumann
postulate through the study of two QND measurements in cascade. One can
show that the conditional probability of measuring the same value of an ob-
servable in the second setup as in the first can be made unity through proper
design of the apparatus. We consider this a direct derivation from quantum
mechanics of the von Neumann postulate, in response to Bell's criticism.

Bell was questioning the placement of the boundary between the quan-
tum and classical domains [9]: "Now nobody knows where the boundary
between the classical and quantum domain is situated." We shall argue that
the boundary can be placed in most situations by virtue of the nature of all
measurement apparatus. A measurement apparatus has to deliver a result
that can be interpreted classically [10], such as the position of the needle of
a meter or a trace on a scope. For this to be possible, the measurement ap-
paratus, even though described quantum mechanically, must have lost, at its
output, quantum coherences that have no interpretation in terms of positive
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probabilities. This is the point of Zurek [11] and others [12-14], who have
shown that macroscopic systems lose coherence extremely rapidly.

It is appropriate that the subject of noise should lead us to ask some
fundamental questions in quantum theory. Quantum theory predicts the be-
havior of an ensemble of identically prepared systems. The statistical theory
of noise does likewise. The fluctuations in the observations made on a quan-
tum system can be, and should be, interpreted as noise. It is, in this writer's
opinion, futile to search for a means to predict the outcome of one single mea-
surement. Statistical mechanics makes only probabilistic predictions about
a system, because of a lack of complete knowledge of the system's initial
conditions. Quantum mechanics raises the lack of knowledge of the initial
conditions to the level of a principle. Hence the statistical character of the
description of nature by quantum mechanics is unavoidable.

At the outset, a disclaimer is in order. This book is not a synopsis of the
excellent work on electrical noise, optical communications, squeezed states,
and quantum measurement that has appeared in the literature. Instead, it
is a personal account of the author's and his coworkers' work over a career
spanning 45 years. Such an account has a certain logical consistency that has
didactic merit, a feature that would be sacrificed if an attempt had been made
to include the excellent work of other authors in such a way as to do it justice.
For the same reason, the literature citations will be found to be deficient. Yet
the author hopes that despite these deficiencies, and maybe even on account
of them, the reader will find this to be a coherent presentation from a personal
point of view of a very fascinating field.

The first three chapters provide the background necessary to understand
the basic concepts used in the remainder of the book: power flow, electro-
magnetic energy, group velocity, and group velocity dispersion; modes in
waveguides and resonators; resonators as multiports and their impedance
matrix and scattering-matrix description; and single-mode fibers, the optical
Kerr effect, and polarization coupling in fibers. Most concepts and laws will
be familiar to the reader. The first three chapters thus serve mainly as a
convenient reference for the later developments.

Chapter 4 derives the probability distribution for the carriers of a cur-
rent exhibiting shot noise and arrives at the spectrum of the current. Next,
the thermal noise on a transmission line is derived from the equipartition
theorem. From this analysis of a reversible (lossless) system it is possible,
surprisingly, to derive Nyquist's theorem that describes the emission of noise
from a resistor, an irreversible process. The noise associated with linear loss
at thermal equilibrium calls for the introduction of Langevin noise sources.
Finally, we derive the probability distribution of photons on a waveguide
(one-dimensional system) at thermal equilibrium, the so called Bose-Einstein
distribution.

With the background developed in Chap. 4 we enter the discussion of
classical noise in passive and active multiports. If the multiports are lin-
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ear, their noise can be described fully by associated Langevin sources. At
thermal equilibrium, these possess some very simple properties. In particu-
lar, the spectral density matrix, appropriately weighted, forms the so-called
characteristic noise matrix. For a passive network at thermal equilibrium, this
matrix is proportional to the identity matrix. In the more general case of a
linear passive network not at equilibrium, or a linear active network, such as
a linear amplifier, the characteristic noise matrix contains all the information
necessary to evaluate the optimum noise performance of the network, the
noise performance that leads to the maximum signal-to-noise ratio at large
gain. This optimum noise performance is described, alternatively, as the min-
imum excess noise figure at large gain, or the minimum noise measure. The
optimization is studied with the simple example of a microwave field effect
transistor (FET).

Chapter 6 develops the background for the treatment of quantum noise.
The electromagnetic field is expressed in terms of a superposition of modes
whose amplitudes obey simple-harmonic-oscillator equations. The field is
quantized by quantization of the harmonic-oscillator amplitudes. The quan-
tum noise of a laser oscillator below threshold is derived. The Heisenberg
description of operator evolution is adhered to, in which the operators evolve
in time. Langevin operator noise sources are introduced in the equations for
passive and active waveguides (an example of the latter is erbium-doped-fiber
amplifiers). The role of the noise sources is to ensure conservation of com-
mutators, which are a fundamental attribute of the modes in the waveguide.
The noise of a typical fiber amplifier is derived. Through much of the text,
the quantum noise will appear additive to the "classical" c-number signal.
Laser amplifiers are well described in this way. However, in general, the quan-
tum noise is not represented so simply. The Wigner function is the quantum
equivalent of a probability distribution. In contrast to a classical probability
distribution, the Wigner function is not positive definite. In order to gain
a better understanding of peculiar forms of quantum noise, we study the
Wigner distribution as applied to a so-called Schrodinger cat state, a quan-
tum state of macroscopic character. This analysis is followed up in Chap. 7
by the quantum description of linear multiports. The formalism is presented
in the Heisenberg representation, which displays the correspondence with the
classical network description. The Schrodinger representation, in which the
wave functions, rather than the operators, evolve in time, is introduced and a
comparison between the two descriptions is made. The concept of entangled
states is introduced. A strong analogy is found to exist between the classical
characteristic noise matrix and its quantum counterpart. It is found that the
commutator relations determine the characteristic noise matrix of a quantum
network. This is the manifestation of a fundamental law, first explicitly stated
by Arthurs and Kelly [151, that requires all linear phase-insensitive amplifiers
to add noise to the amplified signal, if the amplification is phase-insensitve.
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Chapter 8 analyzes detection of microwave signals and optical signals. The
former can be treated classically; the latter require a quantum description.
Direct, homodyne, and heterodyne detection are described. The latter two
provide gain. Heterodyne detection provides phase-insensitive gain and thus
behaves like any other linear amplifier that must add noise to the signal.
Homodyne detection is phase-sensitive and it is found that, in principle, it
need not add noise to the signal.

Chapter 9 looks in detail at high-bit-rate optical-communication detec-
tion via optical preamplification followed by direct detection. In the process,
we find the full photon probability distributions for ideal amplifiers as well
as for the practical case of an erbium-doped-fiber amplifier. The analysis is
based on a quantum description of amplifiers developed by J. A. Mullen and
the author in 1962 [16]. The statistics of the photodetector current are deter-
mined by the photon statistics, from which the bit-error rate is derived. The
minimum number of photons per pulse required for a bit-error rate of 10-9
is determined. The analysis is backed up by recently obtained experimental
data from Lucent Technologies, Bell Laboratories. Engineering practice has
introduced a definition of a so-called noise figure for the characterization of
the noise performance of optical amplifiers. This definition is in conflict with
the definition of the noise figure used for the description of low-frequency and
microwave amplifiers as standardized by the Institute of Electrical and Elec-
tronic Engineers. In concluding the chapter we construct a definition that is
consistent with the IEEE definition [17].

Chapter 10 studies soliton propagation along optical fibers. Solitons pos-
sess particle-like properties as well as wave-like properties: one may assign
to them position and momentum, and amplitude and phase. In the quantum
theory of solitons, these four excitations are quantized in the same way as
they are quantized for particles on one hand and waves on the other hand.
The perturbation theory of solitons is established and from it we derive the
timing jitter of solitons in long-distance propagation, which is the main source
of error in a long-haul soliton communication system. Means of controlling
this effect are described. We show that periodically amplified solitons shed
so-called continuum that limits the allowed spacing between amplifiers. In
long-distance communications, the noise added by the amplifiers is always so
large that the system operates at a power level much larger than that of the
minimum photon number derived in Chap. 9.

Chapter 11 treats phase-sensitive amplification. One important example
is the laser above threshold, in which a fluctuation component in phase with
the signal sees a different amplification from the one seen by a fluctuation in
quadrature with the signal. The Schawlow-Townes linewidth [18] is derived.
Next, we turn to parametric amplification. This amplification is produced
via a pump excitation of a medium with a so-called second-order nonlinear-
ity, a nonlinearity with a response that is quadratic in the exciting fields.
The amplification can be nondegenerate or degenerate. In the former case,
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the amplification is closely analogous to linear phase-insensitive amplification.
Degenerate parametric amplification is phase-sensitive and thus need not add
noise to the signal. In the quantum description of such an amplifier we find
that it produces so-called squeezed states: the quantum noise in one phase
with respect to the "pump" is amplified, and the quantum noise in quadra-
ture is attenuated. Degenerate parametric amplifiers can produce "squeezed
vacuum". We show how squeezed vacuum can be used in an interferometer
to improve the signal-to-noise ratio of a phase measurement.

Squeezed vacuum can also be produced by a third-order nonlinearity, such
as the optical Kerr effect. Fibers are particularly convenient for the use of
the Kerr nonlinearity because of their small mode volume and small loss. The
theory of the generation of squeezed vacuum in a fiber loop is presented in
Chap. 12. Experiments are described that have generated squeezed vacuum,
leading to a reduction of noise by 5.1 dB below shot noise. Further, a phase
measurement is described that used the squeezed vacuum so generated for an
improved signal-to-noise ratio. Chapter 13 discusses the squeezing of solitons.
Solitons behave as particles and waves as outlined in Chap. 10. The squeezing
that can be achieved can address both the particle and the wave nature of
the soliton.

The last chapter takes up the issue of the theory of quantum measure-
ment using optical measurements as an example. At this point, we can use
the formalism developed in the book to present a full quantum analysis of
the measurement process. We take the point of view that physical reality
can be assigned to an observable only with a full description of the mea-
surement apparatus, which in turn is a quantum system obeying quantum
laws. Further, we go through the analysis of a quantum measurement and the
evolution of the density matrix of the observable as it proceeds through the
measurement apparatus. We show that the reduced density matrix obtained
by tracing the density matrix over the measurement apparatus "collapses"
into diagonal form, an observation consistent with, yet different from, the von
Neumann postulate of the collapse of the wave function of the observable into
an eigenstate of the measurement apparatus. Pursuing this point further, we
analyze the effect of a cascade of two measurements of the photon number of
a signal. We show that with proper design of the measurement apparatus, the
conditional probability of observing m photons in the second measurement if
n photons have been measured in the first approaches a Kronecker delta, bn,m.
This is again consistent with, yet somewhat different from, the von Neumann
postulate that the measurement apparatus projects the state of the observ-
able into an eigenstate of the measurement apparatus. Finally we address
the Schrodinger cat paradox, using an optical realization of the measurement
apparatus, and show that the cat does not end up in a superposition state of
"dead" and "alive."





1. Maxwell's Equations, Power, and Energy

This book is about fluctuations of the electromagnetic field at microwave
and optical frequencies. The fluctuations take place in microwave and optical
structures. Hence a study of electromagnetic-field fluctuations requires the
terminology and analytic description of structures excited by microwave or
optical sources. The equipartition theorem of statistical mechanics used in
Chap. 4 in the derivation of Nyquist's theorem is formulated in terms of en-
ergy. Hence, in the application of the equipartition theorem, an understanding
of the concept of energy is necessary. When media are present, the medium
stores energy as well. The excitation of a mode of the electromagnetic field,
as discussed in Chap. 2, involves both the energy of the electromagnetic field
and the energy in the excited medium.

We start with Maxwell's equations, which characterize electromagnetic
fields at all frequencies. Media are described by constitutive laws which must
obey certain constraints if the medium is to be conservative (lossless). Such
media store energy when excited by an electromagnetic field. Poynting's the-
orem relates the temporal rate of change of stored-energy density to the
divergence of the power flow. The characterization of dispersive media is
straightforward in the complex formulation, with frequency-dependent sus-
ceptibilities. The energy density in the medium involves the susceptibility
tensor and its derivative with respect to frequency. Finally, we look at the
reciprocity theorem, which provides relations among the scattering coeffi-
cients of a multiport network. The chapter contains topics from [19-24].

1.1 Maxwell's Field Equations

The first two of Maxwell's equations, in their familiar differential form, relate
the curl of the electric field E to the time rate of change of the magnetic flux
density B, and the curl of the magnetic field H to the sum of the electric
current density J and the time rate of change of the displacement flux density
D.

Faraday's law is

V x E
5i_ *
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Ampere's law is

V xH=J+ 6t-. (1.2)

One may take the fields E and H as the fundamental fields, and the vectors
B and D as the hybrid fields that contain both the fundamental fields and
properties of the medium. Alternately, one may define E and B as funda-
mental and consider D and H as hybrid. The former point of view is that
of the so called Chu formulation; the latter is more widely accepted by the
physics community. It has been shown [19] that the two points of view give
the same physical answers and thus one is free to choose either. The difference
between the two formulations is hardly noticeable in a discussion of station-
ary media. However, when moving media and forces are taken into account,
the difference is both profound and subtle. While the issue involved does not
affect the discussion in the remainder of this book, the author nevertheless
takes the opportunity to discuss some of its aspects, since it played an impor-
tant role in his research in the 1960s, and the way the issue was eventually
resolved is typical of any fundamental research. Professor L. J. Chu modeled
magnetization by representing magnetic dipoles by two magnetic charges of
equal magnitude and opposite sign. In this way, a perfect analogy was es-
tablished between polarizable and magnetizable media. The formulation of
moving dielectric media, as developed by Panofsky and Phillips [20], could
be applied to moving magnetic media in a way that was consistent with rela-
tivity. Further, this point of view established an analogy between the electric
field E and the polarization density P on one hand, and the magnetic-field
intensity H and the magnetization density M on the other hand. Soon af-
ter the publication of this approach in a textbook on electromagnetism [21],
the approach was criticized by Tellegen [22]. He pointed out that magnetic
dipoles ought to be represented by circulating currents, because such cur-
rents are the sources of magnetism at the fundamental level. More seriously,
the force on a circulating current was shown to be different from that on a
magnetic dipole in the presence of time-varying electric fields. It turned out
that the difference between the force on a magnetic dipole and the force on
a current loop with the same dipole moment as found by Tellegen was small,
involving relativistic terms. However, if there were such a difference, the re-
placement of magnetic dipoles by magnetic charge pairs would be flawed.
The argument seemed valid at the time. It led Prof. P. Penfield and the au-
thor to study the problem more carefully. We assumed that Chu's approach
was valid, and that there must exist a subtle error in Tellegen's derivation
of the force on a magnetic dipole formed from a current loop. This "hunch"
proved correct. It turned out that a magnetic dipole made up of a current
loop in a self-consistent way, such as a current flowing in a superconducting
wire loop, undergoes changes in a time-varying electric field, changes that
were omitted by Tellegen. The charges induced by the electric field create
currents when the field is time-varying. These currents, when exposed to the
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magnetic field, are acted upon by a force that cancels the critical term found
by Tellegen [22]. The force on a magnetic dipole made up of two magnetic
charges or of a circulating current was indeed the same, except that in the
case of the current model relativistic effects had to be included in the rest
frame of the loop, because there is motion in the rest frame of the loop. Thus,
Chu's model was not only correct, but much simpler, since it did not need
to consider relativistic issues in the rest frame of the magnetic dipole. A full
account of this investigation is presented in [19]. As happens so often, related
work went on at the same time, resulting in publications by Shockley and
James [24] and Coleman and van Vleck [25].

Returning to the discussion at hand, we shall opt for Chu's approach, in
which E and H are considered fundamental field quantities, whereas D and
B are hybrid quantities containing the polarization and magnetization of the
medium. In addition to Faraday's law (1.1) and Ampere's law (1.2), which
relate the curl of the electric and magnetic fields to their vector sources,
we have the two Maxwell's equations which relate E and H to their scalar
sources by two divergence relationships.

Gauss's law for the electric field is

(1.3)

where p is the charge density other than the polarization charge density.
Gauss's law for the magnetic field is

(1.4)

The equation of continuity

v.J=_ap

is a consequence of (1.2) and (1.3). The vectors and scalars appearing in (1.1)-
(1.5) are, in general, all functions of time and space. We use rationalized mks
units. The electric field E is given in V/m; H is given in A/m. A convenient
unit for the magnetic flux density B is V s/rn 2, the current density J is given
in A/m2.

The medium acts as a source of electromagnetic fields via its polarization
density P and magnetization density M:

D = E0E + P , (1.6)

B = µ0(H + M) . (1.7)

Equations (1.1)-(1.7) by themselves do not yet determine the fields. In addi-
tion one has to know the relations between M and H, and between P and E,
and the relation between the fields and the current density J. These are the
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so-called constitutive relations. Once the constitutive relations are available
the set of equations is complete and the equations can be solved subject to
appropriate boundary conditions.

In the case of a linear anisotropic dielectric medium, the polarization P
is related to the electric field by linear equations:

Px = Eo(XxxEx + XxyE''y + XxzEz) , (1.8a)

Py = fo(XyxEx + XyyEy + XyzEz) , (1.8b)

Pz = fo(XzxEx + XzyEy + XzzEz) (1.8c)

These three equations are written succinctly in tensor notation:

P = EoXe E. (1.9)

It is convenient to combine the constitutive law (1.9) with the definition
of the displacement flux density (1.4) and write it in the form

D = E E (1.10)

with E defined as the dielectric tensor

Eo (1 + Xe) , (1.11)

where 1 is the identity tensor. The dielectric permeability tensor E is sym-
metric, as will be proved later.

Analogous relations may be written between the magnetization M and
the magnetic field intensity H. Since there is symmetry between polarization
effects and magnetization effects in the Chu formulation, it is easy to treat
magnetization effects by analogy. One writes for the magnetic field

(1.12)

where µ is the permeability tensor. At optical frequencies, magnetic effects
are generally negligible, except in the case of the Faraday effect.

In the special case of an isotropic medium, the tensors µ and E reduce to
scalars p and f times the identity tensor. Finally, in the absence of any matter
the constants f and p assume particular values, which are worth remembering

1 x 10
_9Asfo =mhos/m,

361r Vm

µo = 47r x
10-7 V s

A m = ohm s/m.

The product of fo and µo has a fundamental significance:

1
/iofo = 2 s2/m2T2

(1.13)

(1.14)

(1.15)
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where c is the light velocity in free space. The value of eo is adjusted to
provide the correct value of the speed of light; it changes as the speed of light
is determined more and more accurately.

If the only currents in the medium considered are due to conduction and
if the medium is linear, we have the simple relation for the current density J

J=oE, (1.16)

where a is the conductivity of the medium in mho/m. This is the field-
theoretical form of Ohm's law. A form of Ohm's law more general than (1.16)
applies to anisotropic linear conducting media. In such media the current
density J and field E are related by a tensor relation analogous to (1.9):

(1.17)

where v is a tensor. In general, Q is not symmetric. However, in Sect. 1.3 we
shall show that Q must be a symmetric tensor if the material is resistive in
the true sense of the word.

Equations (1.1)-(1.7) in conjunction with (1.10), (1.12), and (1.17) are
sufficient to find the electromagnetic field in a linear medium, provided proper
boundary conditions are stated.

Before concluding this section, we note that Maxwell's equations are time-
reversible if they do not contain a conduction current J and there is no free
charge p. Indeed, suppose we have found a solution E(r, t) and H(r, t) to
Maxwell's equations (1.1) and (1.2), with the constitutive laws (1.10) and
(1.12) determining D(r,t) and B(r,t). Then, if we switch from t to -t,
from E(r,t) to E(r, -t), H(r,t) to -H(r, -t), D(r,t) to D(r, -t), and
-B(r, t) to -B(r, -t), it is easy to verify that (1.1) and (1.2) are obeyed
automatically, along with the constitutive laws (1.10) and (1.12). The new
solution is called the time-reversed solution. It is obtained from the evolution
of the forward-running solution as if the movie reel on which the evolution is
recorded were run backwards. The B and H fields are, of course, reversed.

1.2 Poynting's Theorem

In radiation problems or in problems of electromagnetic propagation, we are
often interested in the transmission of power from one region of space to
another. It is, therefore, important to clarify all concepts relating to power
and energy. Poynting's theorem accomplishes this. Poynting's theorem is a
mathematical identity which can be endowed with profound physical signif-
icance. We start with Maxwell's equation (1.1) and dot-multiply by H. We
take (1.2) and dot-multiply by E. Subtracting the two relations and making
use of a well-known vector identity, we obtain

=0. (1.18)
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Equation (1.18) is the differential form of Poynting's theorem. Integrating
over a volume V, bounded by a surface S, we obtain

\
(f E H IdV=O.
s v

(1.19)

In (1.19) we have made use of Gauss's theorem. Equation (1.19) is the inte-
gral form of Poynting's theorem. Let us turn to an interpretation of (1.19).
The integral fv E E. JdV is the power imparted to the current flow J inside
the volume V. This power may be consumed in the ohmic loss of the material
within which the current flows; or, for example, if the current is due to a
flow of electrons in free space, the power goes into the time rate of increase
of the kinetic energy of the electrons. The second volume integral in (1.19)
is interpreted as the power that is needed to change the electric and mag-
netic fields. Part of it may be used up in the magnetization or polarization
processes, the rest goes into storage. With the integral f E JdV interpreted
as the power imparted to the current flow and the last integral in (1.19) as
the power needed to change the fields in the medium, there is only one inter-
pretation for the first term in (1.19) on the basis of the principle of energy
conservation. The integral f E x H dS over the surface enclosing the volume
must be the electromagnetic power flow out of the volume. Indeed, from the
principle of energy conservation we have to postulate that

(a) the power flowing out of the volume, through the surface enclosing the
volume,

(b) the power imparted to the current flow, and
(c) the power that goes into the changes of the fields in the medium (and

vacuum where there is no medium)

should all add up to zero. One may attach the meaning of density of electro-
magnetic power flow to the vector E x H, often denoted by S, the so-called
Poynting vector. The second volume integral in (1.19) can be separated into
a field part and a material part, using (1.6) and (1.7):

f(E.+H.)dV

= dt
f (oE2 + 2µ0H2 I dV (1.20)

JJJ

\
+Jv(E at

where we have replaced the partial time derivative 8/at by d/dt, since the
volume integral is independent of r. The first part of the right-hand side,
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involving the time derivative of Ze0E2 + Zµ0H2, can be considered to be the
rate of change of the energy stored in the electric and magnetic fields, and
the second part the rates at which energy is imparted to the polarization and
magnetization. Whether the energy imparted to the polarization is stored or
not depends upon whether E dP integrated from a value P = 0 to a value
p = P is independent of the path of integration in P space. Indeed, consider
the energy imparted to P per unit volume. If P = 0 at t = -oo and P = P
at t, we have

ft
dtE aP

= E dP .
oo fit

lp

If P returns to zero at t = t', then

rt
dtE aP = E(P) dP

J0

(1.21)

(1.22)

where the last expression is an integral over a closed contour in P space, with
E treated as a function of P. If the integral fP E dP is independent of the
path of integration in P space, then f E dP = 0 and no energy has been
consumed in raising P from zero to some value P and returning it back to
zero. In this case, the integral f E dP can be interpreted as energy stored
in the polarization. Analogous statements can be made about the magnetic
contribution H d(µ0M).

In a linear medium, it is more convenient to add the field part of the
imparted-energy differential, d(2 e0E2 ), to the polarization part, E E. dP, iden-
tifying the total-energy differential, dWe, with

(1.23)

In the next section we shall take advantage of this identification.
The physical conclusions drawn from Poynting's theorem will enable us to

evaluate the electromagnetic power that passes through a given cross section
in space, say the cross section of a waveguide. However, Poynting's theorem,
as a mathematical identity, can be used for purposes other than the evaluation
of power flow. An illustration of one of these applications is the so-called
uniqueness theorem of Sect. 1.4.

1.3 Energy and Power Relations
and Symmetry of the Tensor E

In Sect. 1.1 we introduced the dielectric tensor and the magnetic permeabil-
ity tensor as descriptive of the response of a linear medium. These tensors
must obey symmetry and positive-definiteness conditions imposed by energy
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considerations that follow from Poynting's theorem, derived in the preceding
section. From Poynting's theorem we know that the energy per unit volume
supplied to the field and polarizable medium is

fD
We

0
(1.24)

In the above integral, the electric field is considered a function of D. The
energy is obtained as a line integral of a field E in the space of D.,, Dy, and
D. Hence, the energy is naturally a function of the displacement density D.
In the case of a linear medium, however, it is more convenient to use E as
the independent variable. When the constitutive relation (1.10) between D
and E is introduced, we obtain

We thus have for the electric energy density, (1.25),

(1.25)

fE
We E dE. (1.26)

0

The integral (1.26) is best visualized by considering it as a line integral in a
space within which the three components of the electric field are used as the
coordinates (see Fig. 1.1). Now suppose that we apply an electric field to the
dielectric material and then remove it. In doing so we obtain for the integral
(1.26)

(1.27)

where the contour integral is carried out over a closed path in the space of
E. The contour integral (1.27) must be zero. The problem is identical to the
problem of defining a conservative force field F(r) in the three-dimensional
space r(x, y, z). If the contour integral fC F dr over any closed contour C
vanishes, then the force field is conservative. By Stokes' theorem, the contour
integral can be converted into a surface integral over a surface S spanning
the contour C

curlic s
where the curl is given in Cartesian coordinates by

8FZ 8Fy
8y 8z

curl F=VxF= OFy--FZ
az ax

aFy aFF
8x 8y
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Ez

dE

E= E

E-space

EY

Fig. 1.1. Integration path in E space

Since the integral vanishes over any arbitrary contour, a conservative field
has to be curl-free. This analogy can be used to obtain constraints on the
tensor E. The argument is cast into the space of coordinates E,;, E., and E..
The "force field" is

(E . E)x = ExxEx + EyxEy + EzxEz 1

(E . E)y = ExyEx + EyyEy + EzyEz ,

(E . E)z = ExzEx + EyzEy + EzzEz .

(1.28)

This "force field" has to be curl-free in the Cartesian "space" of E, where
the partial derivatives are with respect to E.,, Ey, and E,:

(1.29)

It follows from (1.29) that

Eyz = Ezy , (1.30a)

Exz = Ezx , (1.30b)

Eyx = Exy . (1.30c)

The E tensor must be symmetric.
Next, we turn to the evaluation of the energy. We note that for a sym-

metric E tensor the order in the multiplication

is immaterial. But, since

d(E. . E) = dE E E+E. dE,
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we have

(1.31)

Using the above expression, we can find immediately for the stored-energy
density

WeEE dE=
- /

E
(1.32)

Since the stored-energy density must be a positive quantity for any field E,
the elements of E have to form a positive-definite matrix. A matrix is positive-
definite if all determinants of the principal minors of the matrix are positive.
In particular,

EXX > 0, Eyy > 0, and EZZ > 0

is necessary but not sufficient.
The preceding proof started from the postulate that the integral (1.26)

carried out over a closed contour must yield zero so that the medium returns
all the energy supplied to it in a process which starts with zero field and
ends up with zero field. In fact, an integral over a closed contour must always
yield zero if we do not permit the medium to generate power. Indeed, if the
integral happened to come out positive when the contour was followed in
one sense, indicating power consumption, then reversal of the sense would
result in a negative value, i.e. energy generation. Hence, the contour integral
must yield zero for all passive media. But, then, the medium is dissipation-
free. Therefore, one may state unequivocally that a linear dielectric which
responds instantaneously to the field, as in (1.10), is dissipation-free.

In the special case of an isotropic medium, where the tensor E can be
replaced by a scalar E (or rather by the identity tensor multiplied by the
scalar e), (1.32) reduces to

We = 2EE2 . (1.33)

In a very similar manner one can arrive at the conclusion that the per-
meability tensor µ is symmetric and that linear materials fulfilling (1.12) are
lossless, and one can obtain the expression for the magnetic energy stored
per unit volume:

W,,,, B
0

(1.34),

is the energy supplied by the magnetic field in order to produce the magnetic
flux density B. The similarity of (1.34) and (1.24) shows that all mathemat-
ical steps performed in connection with the treatment of a linear dielectric
medium are applicable to linear magnetic media. For the density of magnetic
energy storage in a linear medium, we have
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Wn= (1.35)

As was found in the case of a dielectric medium, the elements of µ have to
form a positive definite matrix. Again, for an isotropic medium (1.35) reduces
to

W,,, = 2µH2. (1.36)

Finally, consider briefly the power dissipated in a conducting medium
characterized by (1.17). The power per unit volume P is

Only the symmetric part of the conductivity tensor contributes to the power
dissipation. Indeed, it is easy to show that for an antisymmetric tensor, Q(a),

E. (a).E=0.
If the medium is passive, the power must always be dissipated (and not
generated), and P must always be positive, regardless of the applied field E.
Accordingly, the elements of the symmetric Q tensor must form a positive
definite matrix.

The Poynting theorem (1.19) was stated generally, and no assumption
about the linearity of the medium had been made. If we introduce (1.32) and
(1.34), we have

aD M = l aE E (E E)
at at 2 at

and

aB aH 1 aH
at H µ at 2 at (H µ H)

Introducing these two expressions into (1.19), we have for a linear dielectric
medium

2(E E+H H)dV=0.
(1.37)

In an isotropic medium within which E reduces to scalars, (1.37) assumes the
form

i(ExH).dS+ J E JdV + dt f(fE2 + pH2)dV = 0. (1.38)

In free space, in the absence of currents, J = 0, E = Eo, µ = µo, and (1.37)
reduces to

i E x H dS + dt J 2 (EoE2 +µ0H2) dV = 0 . (1.39)
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1.4 Uniqueness Theorem

In the analysis of electromagnetic fields it is necessary to know what intitial
conditions and what boundary conditions are necessary to determine the
fields. It is also of interest to know whether a set of initial and boundary
conditions determines the fields uniquely. Energy conservation theorems or
their generalizations often serve to provide the proof of uniqueness. In this
section we use Poynting's theorem to determine the necessary and sufficient
boundary conditions and initial conditions to describe the evolution of a field
uniquely.

Consider a volume V enclosed by the surface S. The volume is assumed
to be filled with a linear medium characterized by (1.10), (1.12), and (1.17).
The quantities E, µ, and v may be functions of position. Suppose that at the
time t = 0 the magnetic field and the electric field are completely specified
throughout the volume V. Assume further that for all time the tangential E
field is specified over the part S' of the surface S, and the tangential H field
is specified over the remaining part S". The uniqueness theorem then states
that the E and H fields through the entire volume are specified uniquely
through all time by these initial and boundary conditions.

The best way of proving the theorem is to suppose that it is not fulfilled.
When this supposition leads to a contradiction, the proof is accomplished.
Thus, suppose that, for given initial E and H fields throughout the volume,
and for tangential E and H fields over the surface given for all time, two dif-
ferent solutions exist inside the volume. We denote the two different solutions
by the subscripts 1 and 2. Since Maxwell's equations in the presence of lin-
ear materials are linear, the difference of the two solutions is also a solution.
Thus, consider the difference solution

Hd = H1 - H2 , (1.40)

Ed=E1- E2,
with

Hd(t = 0) = Ed(t = 0) = 0

and

(1.41)

(1.42)

nxEd=O on S', nxHd=O on S" forallt. (1.43)

The difference field must fulfill Poynting's theorem, (1.37), applied to the
volume enclosed by the surface S:

Ed x Hd dS + IV Ed Ed dV
sd

IV

1 (1.44)
dt 2(EdeEd+HdµHd)dV=0 .
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The surface integral in (1.44) vanishes for all time by virtue of (1.43),
and the volume integrals vanish at t = 0 by virtue of (1.42). The volume
integral has the form of an energy storage of the difference solution, a positive
definite quantity since the matrices of E and µ are positive definite (Sect. 1.3).
Since the initial energy storage of the difference solution is equal to zero at
t = 0, the time derivative of the second volume integral in (1.44) can only
be positive (or zero). The first volume integral in (1.44) can only be positive
(or zero). It follows that the E field and H field of the difference solution
must remain zero through all time. Therefore, the original solutions 1 and 2,
by assumption different, must actually be identical. The uniqueness theorem
is proved. Once a solution of Maxwell's equations is obtained for a linear
medium which fulfills the initial conditions and the boundary conditions over
all time, one can conclude from the uniqueness theorem that the solution
obtained is the only possible solution.

1.5 The Complex Maxwell's Equations

In the study of electromagnetic processes in linear media, processes with
sinusoidal time variation at one single (angular) frequency w are of particu-
lar importance. The reason for this is the following. Microwave and optical
frequencies are extremely high. Any modulation of a carrier is usually at a
frequency low compared with the carrier frequency. Thus, in most cases, a
modulated microwave or optical process can be treated as a slow succession
of steady states, each at one single frequency. More generally, even if the
process cannot be treated as a slow succession of steady states, any arbi-
trary time-dependent process can be treated as a superposition of sinusoidal
processes by Fourier analysis.

In a linear medium a steady-state excitation at a single frequency w pro-
duces responses that are all at the same frequency. A field vector depends
sinusoidally upon time if all three of its orthogonal coordinates are sinu-
soidally time dependent. The three components of a vector are scalars. The
use of complex scalars for sinusoidally time-varying scalars is well known.
The following treatment of complex vectors is based on this knowledge.

Thus, suppose that we write the electric and magnetic fields in complex
form:

E(r, t) = Re(E e-;wt) = 2 (E e-'wt + E*e+'wt) (1.45)

B(r, t) = Re(B a-;wt) = 2 (B a-iwt + B*e+iwt) , (1.46)

where the asterisk indicates the complex conjugate. Let us introduce the
expressions for E and B into Maxwell's equation (1.1). We obtain
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V X (Be-'w' + E*e+'wt) = iw(Be-"O' - B*e+iwt)
. (1.47)

Equation (1.47) must apply at an arbitrary time. Setting the time to t = 0,
we obtain

V x (E+E*)=iw(B-B*). (1.48)

Setting wt = --7r/2, we obtain

V x (iE - iE*) = iw(iB + iB*) . (1.49)

Dividing (1.49) by i and adding the result to (1.48), we finally have

V x E = iwB . (1.50)

In (1.50), the time does not enter. This equation is an equation for functions
of space only. The introduction of complex notation has thus enabled us
to separate out the time dependence and obtain equations involving spatial
dependence only. Thus far we have indicated the complex fields E and B,
which are functions of r, by an overbar. Henceforth we shall dispense with
this special notation. It will be obvious from the context whether the fields
are real and time-dependent or complex and time-independent.

In a similar manner we obtain for all Maxwell's equations

VxE=iwB, (1.51)

VxH=J - iwD, (1.52)

(1.53)

V.D=p, (1.54)

(1.55)

(1.56)

V.J=iwp. (1.57)

The quantities in (1.51)-(1.57) are complex vector or scalar quantities and
are functions of space only.

The complex form of Maxwell's equations can treat dispersive media in
a simple way that is not possible with the real, time-dependent form of
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Maxwell's equations. The polarization of dispersive polarizable media is re-
lated to the electric field by a differential equation in time. Complex notation
in the Fourier transform domain replaces differential equations in time with
algebraic equations with frequency-dependent coefficients. For an instanta-
neous response, the polarization is related to the electric field by a suscep-
tibility tensor x as shown in (1.9). In a dispersive dielectric medium, the
dielectric susceptibility simply becomes a function of frequency, Xe = Xe(w):

(1.58)

The dielectric tensor f becomes frequency-dependent through the definition
(1.11), E = E(w). The same holds for a dispersive magnetic medium; the
magnetic suceptibility tensor becomes frequency-dependent, Xm = Xm (w)
The magnetization density is given by

M = Xm(w) H . (1.59)

The magnetic permeability tensor µ also becomes frequency dependent, µ =
µ(w)

In Sect. 1.1 we mentioned the time reversibility of Maxwell's equations in
their real, time-dependent form, in the absence of free charges and conduction
current. Time reversibility can also be extracted from the complex form of
Maxwell's equations. Replacing w by -w effectively turns the time evolution
around. This reversal of the sign of frequency leaves (1.51), (1.52), (1.55), and
(1.56) unchanged if E*, D*, -H*, and -B* are accepted as the new field
solutions, and the susceptibility and permeability tensors obey the relation

Xe(w) = Xe(-w)
Xm(w) = Xm(-w) .

(1.60a)

(1.60b)

The relations (1.60a) and (1.60b) are the consequence of the fact that
P, M, E, and H are real, time-dependent vectors. For this condition to hold

P* (-W) = Xe(-w) E* (-w) = Xe(-w) . E(w) = Xe(w) - E(w) .
Since E(w) can be adjusted arbitrarily, it follows that xe(-w) = Xe(w)

Another aspect of time reversibility is of importance. Note that -B*
replacing B implies also the reversal of any d.c. magnetic field present. If
this is not done, the field solutions are not time-reversible. This is the case
in the Faraday effect.

1.6 Operations with Complex Vectors

In order to get a better understanding of what is involved in complex-vector
operations, we shall study a few special cases. As an example, consider the
dot product of a complex vector E with itself. Splitting the complex vector
into its real and imaginary parts, we can write
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E E = [Re(E) + i Im(E)] [Re(E) + i Im(E)]
(1.61)

= Re(E) Re(E) - Im(E) Im(E) + 2i Re(E) Im(E)

Equation (1.61) indicates an interesting feature of complex vectors. It is quite
possible for the dot product of a complex vector with itself to be equal to
zero without the vector itself being zero. (This feature should be contrasted
with a dot product of a real vector with itself. If this dot product turns out
to be zero, one must conclude that the vector itself is a zero vector.) Indeed,
looking at (1.61) we find that its right-hand side can be equal to zero if the
following two conditions are fulfilled:

Re(E) Re(E) = Im(E) Im(E), (1.62)

Re(E) Im(E) = 0. (1.63)

The first of the two above equations requires that the real part of the vector be
equal in magnitude to its imaginary part. The second of the two equations
requires that the real part of the complex vector be perpendicular to its
imaginary part. A complex vector whose dot product with itself is equal to
zero corresponds to a time-dependent vector with circular polarization.

Next let us study another interesting dot product of a complex vector
with itself, that is, with its own complex conjugate. In detail, we have

E E* = [Re(E) + i Im(E)] [Re(E) - i Im(E)]
(1.64)

[Re(E)]2 + [Im(E)]2 .

We find that the product E E* is equal to the sum of the squares of the
real and imaginary parts of the vector. This important product is referred to
as the square of the magnitude of the complex vector. If E E* vanishes, E
is a zero vector.

Equations (1.61) and (1.64) show how the rules of vector multiplication
and multiplication of complex numbers are combined in operations involving
complex vectors. Applying these same rules, one obtains easily

ExE=O. (1.65)

The cross product of a complex vector with itself is zero. This result is iden-
tical with the result obtained from cross multiplication of real vectors. Next,
considering the cross product of a complex vector E with its own conjugate,
we obtain

E x E* = [Re(E) + i Im(E)] x [Re(E) - i Im(E)]
(1.66)

= 2i Im(E) x Re(E) .



1.6 Operations with Complex Vectors 27

This product is not automatically equal to zero. It is zero if, and only if,
the real and imaginary parts of the vector E are parallel to each other. We
conclude that the product E x E* is equal to zero if, and only if, the time-
dependent vector E(r, t) is linearly polarized.

In (1.61)-(1.66) we have studied various products of a complex vector with
itself or its own complex conjugate. Next, we look at products of two differ-
ent complex vectors. We start with E(r, t) x H(r, t). Introducing complex
notation, we obtain

E(r, t) x H(r, t) = 2 [E(r)e-'wt + E* (r)e+iwt]

x 2
[H(r)e-iwt + H* (r)e+iwt]

4 [E(r) x H*(r) + E*(r) x H(r)]

+1[E(r) x H(r)e-2i"t + E*(r) x H*(r)e+2iwt]

(1.67)

Two terms have resulted on the right-hand side of (1.67). The first term does
not involve time. The second term is a sinusoidally time-dependent vector
varying at double the frequency. If we take a time average of (1.67), the
second term drops out and there remains

T
J

T E(r, t) x H(r,t)dt = 2Re(E x H*) , (1.68)
J0

where

T
21r=-.
W

If E(r, t) is identified with the electric field and H(r, t) with the magnetic
field of an electromagnetic process sinusoidally varying with time at the fre-
quency w, we have found that the time average of the power flow density is
equal to Re(E x H*).Z

In a similar manner, one can show, for two sinusoidally time-dependent
vectors A(r, t) and B(r, t),

fT
T

A(r, t) B(r, t)dt = 2 Re[A(r) B* (r)] . (1.69)

Equation (1.69) has an important physical significance. Set A(r, t) = E(r, t),
the sinusoidal time-varying electric field in an anisotropic nondispersive di-
electric. Replace the vector B(r,t) in (1.69) with E E(r,t) = D(r,t), the
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displacement flux density set up by the sinusoidal time-varying electric field.
We then have

T J T E(r, t) E(r, t)dt = 2 Re[E(r) E* (r)] . (1.70)
0

The complex-conjugate sign has been omitted on the tensor E, since e is real
if the medium is nondispersive. Since E is a symmetric tensor, we have

E*(r) E E(r) = E(r) E E*(r) . (1.71)

The product of E E E* is equal to its own complex conjugate according to
(1.71) and is, therefore, real. Instead of (1.70) we may then write

2 T

jT
E(r, t) E E(r, t)dt 4 E(r) E E* (r) . (1.72)

Equation (1.72) expresses the time average of the electric energy storage in
terms of the complex electric-field vector. We obtain in a similar manner, for
the time average of the magnetic energy storage,

2 T

IT
H (r, t) H(r, t)dt = 4H(r) H*(r) . (1.73)

Having gained some experience with operations on complex vectors, we
are now able to derive various theorems involving products among complex
vectors. One such theorem is Poynting's theorem, which is important for the
identification of power flow and energy density in dispersive media.

1.7 The Complex Poynting Theorem

We have mentioned before that the amplitude and phase information of a
real, time-dependent vector is contained in its complex counterpart. We have
also mentioned that it is often useful to gain an understanding of relations
existing among the complex vectors themselves. In this way we can often
obtain interpretations of physical processes without having to go back into
the real, time domain. The complex Poynting theorem is one of the theorems
that can be proved using the complex, time-independent vectors.

The conventional form of the theorem is obtained by assuming the fre-
quency w to be real. A more general theorem is obtained if one assumes w to
be complex, as we shall do here [26]. In particular, we shall replace -iw in
(1.51) and (1.52) by s and set

Re(s) = a , Im(s) _ -w . (1.74)

Thus



1.7 The Complex Poynting Theorem 29

VxE=-sB, (1.75)

VxH=J+sD. (1.76)

The use of a complex value for the frequency s means that one is considering
sinusoidal processes that grow or decay exponentially with time. In order to
interpret physically the expressions in the Poynting theorem that are obtained
in this way, it is necessary to restrict a to small values

Jal << (wi. (1.77)

Indeed, the term (1/2)Re(E x H*) can be interpreted as the time-averaged
electromagnetic power density only if the amplitudes of E(r, t) and H(r, t)
vary sufficiently slowly in time that an average over one period can still yield
unequivocal results.

Starting with (1.75), we dot-multiply it by H*. Further, we dot-multiply
the complex conjugate of (1.76) by E. By subtracting the two resulting equa-
tions from each other and using a well-known vector identity, we have

(1.78)

The integral form of the Poynting theorem is obtained by integrating (1.78)
over a chosen volume V enclosed by a surface S, and making use of Gauss's
theorem to transform the divergence term into a surface integral. Since the
divergence of E x H* is essentially the surface integral of E x H* over a
small volume divided by the volume, we may conduct all power and energy
arguments on the basis of the differential form of the Poynting theorem. In
order to obtain a physical meaning for (1.78), it is convenient to separate out
explicitly the terms corresponding to the polarization of matter. Introducing
the polarization P, we may write for D

D = e0E + P. (1.79)

A time rate of change of the polarization leads to a motion of charge that is
equivalent to an electric current density, so far as its effects upon the field
are concerned:

JP = SP. (1.80)

In the same way a time rate of change of the magnetization produces an effect
analogous to a current density of magnetic charge:

Jr =s,u0M. (1.81)

The polarization current is completely equivalent to an electric current.
It is convenient to add the polarization current density to the free current
density so as to obtain a total electric current density Je:
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Jp+J=Je. (1.82)

Introducing (1.79)-(1.82) into (1.78), we may write for the complex Poynting
theorem

V (1.83)

Here we have introduced the symbols WO,, and We for the magnetic and
electric energy densities in free space:

(We) =
1

4
e0E . E* , (1.84)

(W.0) = 4µ0H H* . (1.85)

The angle brackets indicate a time average. In the real, time-dependent form,
the scalar product of E and Je is the power per unit volume imparted to
the electric current density. Analogously, the scalar product of H and J,,,,
gives the power per unit volume supplied by the magnetic field to the mag-
netic current density. It is reasonable, therefore, to introduce the following
definition for the complex power density:

P+iQ= (1.86)

where P is the time-averaged power density and Q is the so-called reactive
power density. When we introduce the definition (1.86) into (1.83) and split
the latter into its real and imaginary parts, we obtain

V 1Re(ExH*)+P+2a(W, +We)=0

and

V. 1Im(ExH*)+Q-2w(Wm-We)=0.

(1.87)

(1.88)

Equation (1.87) contains the divergence of (1/2) Re(E x H*). This is the
divergence of the time-dependent Poynting vector averaged over one period
of the (slowly growing, a > 0) sinusoidal processes. It shows that the elec-
tromagnetic power delivered per unit volume is equal to the time-averaged
power density P supplied to the medium and the time rate of growth of the
free-space energy density. Equation (1.88) contains phase information on the
divergence of the complex Poynting vector that cannot be obtained simply
from the time-dependent form of the Poynting theorem.

We shall now consider a medium that does not support a free current
density, so that J = 0. Thus, the current density Je is made up fully by the
polarization current density JP. Introducing the constitutive laws (1.58) and
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(1.59) into the expression for the real and reactive power densities supplied
to the medium (1.86), we obtain the following:

P + iQ = 2 (E s*P* + H* si0M)

= 2 [(a + iw)E eoXe (w + ice) E

+(a - iw)H* poZm(w + ia) H].

(1.89)

If the medium is lossless, then P = 0 in the steady state when s = iw. From
this requirement we find from (1.89) for a lossless medium that

Re [iwE. e(w) E*]=0.

This condition is met when the X tensor is Hermitian, that is, when

Xe(w) = Xe(w)

(1.90)

(1.91)

where the dagger t indicates complex conjugate transposition of the tensor.
Thus, we conclude that a lossless dielectric medium possesses a Hermitian X
tensor. This is a generalization of the condition of symmetry found for the
e tensor earlier, when we required that the energy be a single-valued function
of the integration path in the space of E.,, E., and E. In that case we dealt
with a real e, i.e. a real Ze. The polarization responded instantaneously to
the applied field. The same symmetry holds for the magnetic susceptibility
tensor Xm,

In general, the susceptibility tensors in (1.89) have to be evaluated for
the complex frequency s = a - iw. The inequality (1.77) permits a Taylor
expansion of the susceptibility tensors up to first order in a, so that we obtain

P + iQ =
2

+ iw)E eo 1 Xe - is e I E*]
= OW

X,n+is'W I H1

(1.92)

+ 2 a rH*
µo 1 Xm + w

a-XM I H

+E eo Or + w e E* I.
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In evaluating Xe (w + ia) one must note that an expansion of Xe to first
order in dw = is is made first, and then the complex conjugate is taken.
When the medium is lossless, the first of the terms in the last expression of
(1.92) is pure imaginary. Further, when the frequency is complex, s = -iw+a,
then the field amplitudes grow with a time dependence exp(at). The energy is
proportional to products of fields and thus has the time dependence exp(2at)
and the rate of growth of the energy is 2a. When this fact is taken into
account, and it is noted that P is the power density needed to supply the
rate of growth of energy, we find from (1.92) for the energy density in the
medium, WM,

C- Xm HWM = 1E0E Xe +W2 . E* + 1poH* Xm +w a .

(1.93)

In a dispersive medium, the energy density involves the derivative of the
susceptibility tensor.

A simple example may illustrate the identification of energy density. A
neutral plasma made up of light electrons and heavy ions, excited by a si-
nusoidal electric field, experiences displacement of the electrons, whereas the
ions may be considered stationary. The system is isotropic and hence the sus-
ceptibility tensor is a scalar. Denote the density of the electrons by N, their
charge by q, their mass by m, and their displacement by S. The equation of
motion for the displacement is

2

m tb = qE.

The displacement is 6 = -qE/mw2. The effective polarization density pro-
duced is

2P=Nqbq E
m w2

Hence, the susceptibility is
q2N

Xe mEow2 '

and is negative. If one had naively identified the energy density as (Eo/4)XeE2,
one would have obtained a negative answer. Using the correct expression, one
finds

W,M
2 N

4 ( Xe + w Ow) E2 4 mw2
E2

It is easy to identify this energy density as the time-averaged kinetic-energy
density of the electrons:

2

WM = 2
rn

N = 1mw26 N,
where the additional factor of 1/2 comes from the time averaging.
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1.8 The Reciprocity Theorem

In Sects. 1.1 and 1.5 we showed that solutions of Maxwell's equations are
time-reversible if the system contains only loss-free media and all d.c. mag-
netic fields, if present, are reversed. As we shall see later, time reversibility
also implies reciprocity. Reciprocity imposes constraints on the form that
scattering matrices and impedance matrices of a linear system can assume.
However, a system can be reciprocal even when it contains loss. In this sec-
tion we prove the reciprocity theorem for electromagnetic fields. In Chap. 2
we shall use it to arrive at symmetry conditions for impedance and scattering
matrices.

Consider a general volume V enclosed by a surface S, and filled with a
linear medium characterized by a conductivity a and susceptibility tensor E,
which are, in general, functions of position. If we specify the tangential E field
over the part S' of the surface S and the tangential H field over the remaining
part S" of the surface, we can solve Maxwell's equations (1.51)-(1.57) and
obtain a unique solution inside the volume. Suppose that one such boundary
condition has been specified. We shall denote the solution corresponding to
it by the superscript 1. Next, suppose that another boundary condition over
the surface S enclosing the volume V is given. The tangential E and H
fields over the surface corresponding to the second boundary condition should
be different from those of the first one. Denote the solution of Maxwell's
equations corresponding to this boundary condition by the superscript 2. Let
us write down Maxwell's equations for these two solutions:

V x E(1) = iwBWWW , (1.94)

V x H(1) = aE(l) - iwD(1) , (1.95)

V x Ei2i = iwBi2i , (1.96)

V x H(2) = aE(2) - iwD(2) . (1.97)

Now, dot-multiplying (1.94) by H(2), we obtain

V x E(1) H(2) = iwB(l) H(2) . (1.98)

Dot-multiplying (1.95) by E(2), (1.96) by H(1), and (1.97) by EM, we obtain
three further equations:

V x H(1) aE'2 E(1) - iwD(l) E(2) , (1.99)

V x E(2) . H(1) = iwB(2) . H(1) , (1.100)
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V X H(2) E(') = vE(2) E'1) - iwD(2) E(1) . (1.101)

Now let us recall that we are dealing with linear media characterized by per-
meability and susceptibility tensors. Using this fact, adding (1.98) to (1.99)
and subtracting the result from the sum of equations (1.100) and (1.101),
and using a well-known vector identity, we finally have

V (E(1) x H(2)) - V ' (E(2) X H(1))

(1.102)

= iw[Hill ' (7 - At) 'Hi2i + Ei2i (E - Et) Eili],

where the subscript "t" indicates transposition. If the medium is character-
ized by symmetric E and µ tensors, the right hand side of (1.102) vanishes
and we have

V (E(1) x H(2)) = V (E(2) x H(1)) . (1.103)

Integrating (1.103) over the volume V enclosed by the surface S, we obtain
the theorem

Ei1i x Hi2i dS = is Ei2i x H(1) dS (1.104)
s

for

E=Et .

The theorem (1.104) is the so-called reciprocity theorem. We shall have occa-
sion to use it when discussing properties of microwave junctions and optical
couplers. If the system contains lossless media with Hermitian dielectric and
permeability tensors that are not symmetric, the reciprocity theorem does
not apply. Such media are important for the construction of nonreciprocal
structures such as circulators and Faraday isolators.

1.9 Summary

We have presented Maxwell's equations, both in their time-dependent form
and in the complex form as applicable to excitations at one single frequency.
The time-dependent form of the constitutive laws must be written in terms
of differential equations in time if the response of the medium is noninstan-
taneous. In the complex form, the constitutive laws become simple linear
relations between the polarization and the electric field, and between the
magnetization and the magnetic field.

An understanding of power flow and energy density is a prerequisite for
the analysis of thermal noise in electromagnetic structures as carried out in
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Chap. 4. We learned that the energy density is determined by the energy
storage in the field and in the polarizable and magnetizable medium. We
were able to derive a simple expression for the energy storage in terms of the
susceptibilities and their derivatives with respect to frequency. In fibers, the
energy storage in the material (silica) is an important part of the net energy
storage and determines the dispersion of the fiber.

A medium is dispersive if its polarization and/or magnetization does not
follow the electric and/or magnetic field instantaneously. A consequence of
dispersion is that the group velocity, which is also the velocity of energy prop-
agation, becomes frequency-dependent, as we shall see in the next chapter.
This kind of dispersion is an important characteristic of optical fibers.

Problemsl

1.1* All vector identities used in this book are derivable from the following
relations of vector algebra.

(a) In a triple scalar product A x B C one may interchange the and x
without changing the product. A cyclic interchange of the order of the
vector factors leaves the product unchanged.

(b) A x (B x C) = (A C)B - (A B)C

(c) The chain rule holds

(1)

V(fg) = fVg+gVf . (2)

Here, g and f can be replaced by vectors and the multiplication by a
vector multiplication.

Using these facts, prove

Vx(VxA)=V(V.A)-V2A,

V.(ExH)=(V
Do not use decomposition into components in a coordinate system.

1 Solutions are given for problems with an asterisk.
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1.2* A symmetric susceptibility tensor expressed in one particular coordi-
nate system can be put into diagonal form by expressing it in a new coor-
dinate system that is rotated with respect to the original one. To gain some
understanding of these transformations and to keep the analysis simple, we
shall confine ourselves to a two-dimensional example. Show that the trans-
formation of the components of a vector in coordinate system (1) into the
coordinate system (2) rotated by an angle B obeys the law

E'=ME,

where E' is the column matrix [p'], E is the column matrix [
J ,

and
v, Ey

the matrix M is
_M= cos B sin B

[-sinG cosO

(see Fig. P1.2.1).

Fig. P1.2.1. E field in two coordinate systems

(a) Show that the tensor transformation obeys the law E' = MEM-1 with
the components of the dielectric tensor treated as components of a square
matrix.

(b) Show that a symmetric tensor can be put into diagonal form by proper
choice of B. Find B in terms of the tensor components.

1.3 Find the major and minor axes of the polarization ellipse represented by
the complex vector

E = i, + i(i., - aiy)
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1.4 Determine the energy densities We and W,,,,, and the Poynting vector
E X H for a plane wave i.,E,, cos(wt - kz) propagating in free space. Check
that Poynting's theorem (1.38) is satisfied.
1.5 Construct the complex vector expression for the electric field of a right-
handed circularly polarized plane wave at frequency w propagating in free
space in the +z direction with its peak amplitude E. occurring at z = 0, t = 0.
Determine the complex magnetic field and the complex Poynting vector.

1.6 In Sect. 1.7, the example is given of a plasma of charged particles moving
within a neutralizing background. It is shown that the energy density formula
for a dispersive medium includes the kinetic energy of the plasma. Generalize
the example to a charge distribution that is bound to its unperturbed position
by a spring constant k. The equation of motion of each of the charges is

z

mdtz8+ko=qE.

Determine all the energies and show that the energy density formula contains
all pertinent energies.

Solutions

1.1 The del operator can be treated as a vector, as long as it is noted that
differentiation is implied. Further, note that the del operator commutes with
itself. Using the first equation and identifying A and B with V, we obtain

As written, this equation does not make sense, since the del operator must
operate on a function. However, a scalar and a vector commute and thus the
above equation can also be written

which is the desired result. Consider next the second expression. We use
differentiation by parts, and then use the fact that the cross and dot can be
interchanged in a triple scalar product. In this way we obtain a recognizable
vector operation:

V.(E xH)=(V
1.2

(a) Multiplication of a vector by a tensor produces a new vector. Thus, for
example, the displacement flux density D results from the multiplication
of the E field by the dielectric tensor E : D = E E. When expressed
in Cartesian coordinates, the product can be written in terms of matrix
multiplications. Without changing notation, we write for the D vector in
the new coordinate system D' = MD = MEM-'ME = MEM-1E' =

E'.



38 1. Maxwell's Equations, Power, and Energy

(b) Consider the tensor transformation as matrix multiplication. Note: Exy =
Eyx.

Cos B sin B Eyx Exy Cos B -sin B _
= E

'
MEM- _ - sin 0 cos B Eyx Eyy sin B Cos 0

Eyx = Exy COS2 0 +Eyy sin2 0 + Exy sin 20

1
Eyy =Eyy =Exy COS 20 - 2 (Eyx - Eyy) sin 20 ,

Eyy = Eyy Cost 0 + Exx Sing 0 + Exy sin 20

The tensor is put into diagonal form by a rotation by the angle 0, where

B = 1 tan-1
2Exy

2 Exx - Eyy



2. Waveguides and Resonators

The preceding chapter introduced general properties of Maxwell's equations.
It identified power flow and energy density and derived the uniqueness theo-
rem and the reciprocity theorem. This background is necessary for the analy-
sis of metallic waveguides and resonators as used in microwave structures. In
this chapter, we analyze the modes of waveguides with perfectly conducting
cylindrical enclosures. We determine the mode patterns and the dispersion
relations, i.e. the phase velocity as a function of frequency. We derive the ve-
locity of energy propagation and show that it is equal to the group velocity,
i.e. the velocity of propagation of a wavepacket formed from a superposition
of sinusoidal excitations within a narrow band of frequencies. Then we study
the modes in an enclosure, a so-called cavity resonator. We determine the
orthogonality properties of the modes. Next, resonators coupled to the exte-
rior via "ports of access" are analyzed. Their impedance matrix description
is obtained and the reciprocity theorem is applied to the impedance matrix.
This analysis is in preparation for the study of noise in multiports, which
begins in Chap. 5. Finally, we look at resonators in a general context. The
analysis is based solely on the concept of energy conservation and time rever-
sal. The derivation is applicable to any type of resonator, be it microwave,
optical, acoustic, or other. Most of the results obtained here are contained
in the literature [21,27-30]. The concepts of the waveguide mode and of res-
onant modes are necessary for the quantization of electromagnetic systems.
Even though the analysis in this chapter concentrates on waveguides and res-
onators in perfectly conducting enclosures, the generic approach to resonance
is independent of the details of the electromagnetic mode and is based solely
on the concept of losslessness and time reversibility. This is the approach
used in the analysis and quantization of the modes of optical resonators.

2.1 The Fundamental Equations
of Homogeneous Isotropic Waveguides

A uniform waveguide consists of a conducting envelope surrounding a uni-
form, in general lossy, medium. The cross section of the waveguide does not
change along its longitudinal axis. For the purpose of analysis we shall as-
sume that the conducting envelope forming the waveguide is lossless, that
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is, perfectly conducting. The assumption of a lossy conductor would lead,
on one hand, to prohibitive mathematical difficulties; on the other hand, the
disregard of loss in the walls is always a good approximation. The loss per
wavelength in waveguides at microwave frequencies is small and can be dis-
regarded to first order. It can be taken into account a posteriori by simple
methods of perturbation theory.

We shall assume that the medium filling the waveguide is uniform and
isotropic and characterized by a (scalar) conductivity o, permeability µ, and
dielectric constant E. The region inside the waveguide is not necessarily singly
connected, i.e. we can allow for longitudinal conductors inside the conducting
envelope. In this way we can treat coaxial cables, multiconductor systems,
and hollow-pipe waveguides by one and the same theory (Fig. 2.1).

Fig. 2.1. Examples of waveguide geometries

We shall be concerned with the steady-state, sinusoidally time-varying so-
lutions inside the waveguide. Thus, we can make use of the complex Maxwell
equations. Under the assumption made about the medium filling the waveg-
uide, we have

VxE=iwµH,

VxH=(o-iwE)E.

In addition to (2.1) and (2.2), we need the divergence relations, which, under
the assumption of a charge-free, uniform medium, reduce to

V.E=0,

V H = 0 . (2.4)



2.1 Homogeneous Isotropic Waveguides 41

Equations (2.1)-(2.4), in conjunction with the boundary condition that the
E field tangential to the envelope is zero, determine the E and H fields com-
pletely. We now turn to a formal solution of these equations. It is expedient
to introduce an auxiliary parameter into (2.1) and (2.2) so as to enhance their
symmetry. We define the propagation constant in the medium characterized
by a,e,µby

k = wµ(we + ia) . (2.5)

The quantity k is the propagation constant of an infinite, parallel, plane
wave, at the frequency w, within an infinite medium characterized by the
conductivity a, dielectric constant e, and permeability µ. We further define
the impedance parameter by

C_ V1wµ

lwe - a

is the ratio between the E and H fields of an infinite, parallel, plane wave
in the medium under consideration. For its inverse we use the symbol 17:

_ 1 lwe-v
1 iwµ

The square roots in (2.5)-(2.7) are defined so as to give positive real parts
of the corresponding expressions. With the aid of these auxiliary parameters,
we can write (2.1) and (2.2) in the form

V x E = (2.8)

V x H = -ikr1E . (2.9)

Taking the curl of (2.8) and using (2.9) gives the Helmholtz equation for the
electric field,

V2E+k2E=0. (2.10)

In a similar way one obtains the Helmholtz equation for the magnetic field,

V2H+k2H=0. (2.11)

At this point, we can proceed with the solution of the Helmholtz equation for
the electric or magnetic field. Since the structure is uniform along one axis,
say the z axis, one has to expect that the z components of the fields and the
z dependence of the field will play an important role in the final solution. In
order to single out the z components of the E and H fields, it is expedient
to break up the fields into transverse and longitudinal components. This is
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done by multiplying the equations both scalarly and vectorially by the unit
vector along the z direction, i,.

Considering first the dot multiplication of (2.8) by i, we have

(2.12)

We separate the transverse and longitudinal components of the electric field
E and the magnetic field H in the manner shown below.

E=ET+izEz,

H = HT + izHH (2.13)

The subscript T indicates a vector that lies entirely in the plane transverse
to the z axis. The subscript z indicates the z component of the vector (a
scalar). In a similar manner we can split the V operator into a transverse
and longitudinal part:

V _ VT + iz az (2.14)

where, in Cartesian coordinates,

OT = i. ax +iya . (2.15)
y

Introducing the definitions (2.13) and (2.14) into (2.12), and noting that

Zz . (VT + Zz a) X (ET + izEz) = iz - VT x ET,az
we have the simple result

x ET =ikeHz. (2.16)

The dot multiplication of (2.8) by iz reduced its left-hand side to a transverse
derivative of the transverse E field alone. On the right-hand side only the z
component of the H field remains. In a similar manner we obtain, by dot
multiplication of (2.9) by iz,

iz VT x HT = -ikr)Ez . (2.17)

Next, let us cross multiply (2.8) by iz. For its left-hand side we obtain, using
the definitions (2.13) and (2.14)

iz x (V x E) =izX [(VT + Zz az x (ET + izEz)

=izX (VT X ET) +izX (iz x as T l (2.18)

-iz X (iz X VTEz) .
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Noting that VT x ET is z-directed and making use of the expression for triple
vector multiplication, we have

iZx(VxE)=VTEz- aazET

Introducing (2.19) into (2.8) cross multiplied by iz, we finally have

VTEZ-
a

a similar manner we obtain from (2.9)

VTHZ - zHT = -iki7(iZ x ET) . (2.21)

Equations (2.16), (2.17), (2.20), and (2.21) contain the same information as
the original equations (2.8) and (2.9). Whereas the two operations performed
on (2.8) and (2.9) can be performed on any system, the result is useful only
when looking for solutions whose boundary conditions are independent of z,
i.e. solutions in a uniform waveguide. In the treatment of uniform waveguides,
these operations lead to a systematic analysis that underscores properties
which are independent of the waveguide cross section.

The z components of (2.10) and (2.11) are

a2VTEz +
az2

Ez = -k2Ez , (2.22)

zvTHZ+az2Hz=-k2HZ.

Since the Laplace operator can be written using definition (2.14) as

V2=oT+a22

(2.23)

(2.24)

independent equations hold for the longitudinal component of the electric
field and the longitudinal component of the magnetic field. If the waveguide
had instead been filled by a medium that was nonuniform throughout the
cross section, i.e. a function of x and y, or was anisotropic and, therefore,
characterized by a tensor dielectric susceptibility and a tensor magnetic per-
meability, a mutual coupling would have existed between the two equations
for the longitudinal fields.

A simple solution of (2.23) is HZ = 0. Accordingly, there are solutions
for the electromagnetic field inside the waveguide which have no longitudinal
H field, provided we are able to match all boundary conditions. Similarly
Ez = 0 is a solution of (2.22). Accordingly, there are solutions of Maxwell's
equations inside a uniform waveguide which do not possess a longitudinal
electric field, provided that all boundary conditions can be matched with the
fields thus found.
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2.2 Transverse Electromagnetic Waves

In the preceding section we separated Maxwell's equations into longitudinal
and transverse components directed along and across a guiding structure
enclosed by perfectly conducting walls. In this section we look at solutions
for electric and magnetic fields that are purely transverse, for which both
E. and HZ are zero. Not all kinds of structure can support waves of this
transverse character, as we shall find in the course of the analysis.

When we set HZ = 0, we find from (2.16) that

VTXET=0. (2.25)

Hence, the transverse electric field must be derivable from a potential. We
attempt separation of variables, expressing the solution as a product of a
function of z and a function of the transverse coordinates:

ET = -V (z)VTk(x, y) , (2.26)

where O(x, y) is a scalar. Since the electric field is divergence-free, we must
have

V . ET = 0 = _V(Z)VT0, (2.27)

and thus the potential function O(x, y) must be a solution of Laplace's equa-
tion. The potential has to be constant on a perfect conductor so as not to
allow fields that are tangential to the conductor. A solution of Laplace's equa-
tion cannot possess extrema in the region of its validity. Thus if the guide
consists of a hollow, perfectly conducting pipe, the only possible solution is
45 = const, which does not give rise to an electric field. Hence we conclude that
hollow, conducting pipes cannot support TEM waves. On the other hand, a
coaxial cable consisting of concentric cylindrical conductors of radii ra, and
rb, as shown in Fig. 2.2, supports the simple solution of Laplace's equation

0= 1 lnr .

ln(ra/rb) rb
(2.28)

If we introduce the ansatz (2.26) into the Helmholtz equation for the
electric field (2.10), we find that the function V(z) has to obey

d2

dz2
V = -k 2V , (2.29)

which is the one-dimensional wave equation. If the potential is normalized as
in (2.28), the value of V(z) gives the line integral of the electric field from
the inner conductor to the outer conductor; it is the voltage as measured
in a transverse plane. Note, however, that the electric field is not curl-free
globally, and hence a voltage can be defined unequivocally in terms of only a
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Fig. 2.2. Example of a waveguide geometry

line integral in the transverse cross section. We denote the normalized electric
field in the transverse plane by

eT (x, y) = y) ,

and write, for the electric-field solution in general,

E = V(z)eT(x, y) .

(2.30)

(2.31)

The solution for the magnetic field can also be written as a product of a
function of z alone and a function of the transverse coordinates alone:

H = I(z)hT(x, Y)

We have, from (2.21),

d
dzI =

1KV

with

hT=K(izXeT)

where K is a normalization constant. Similarly, from (2.20),

dz V =

with

eT = - K (2Z x hT)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

which is consistent with (2.34). We have found two coupled first-order differ-
ential equations for V(z) and I(z). Elimination of either V(z) or I(z) from
the two coupled equations leads to the wave equation for either V (z), as in
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Fig. 2.3. Field patterns in coaxial cable

(2.29), or I(z). Figure 2.3 shows the electric- and magnetic-field patterns in
a cross section of constant z for the coaxial cable.

The normalization constant K can be chosen by insisting that the complex
power flow be equal to the product of V and P. The Poynting flux integrated
over one cross section reduces to

J,r...
=VI*J2o7

section section

=VI*Kf
°

dSIVTIPI2 .
rnaa

section

Using integration by parts in two dimensions, we find

dS jVTO12 = J ds n - V VTO - f
c o

dS !p*VT0
r ea

= i dS n O*VTP,

(2.37)

(2.38)

where n is the unit vector normal to the contours of the coaxial-cable cross
section in the x-y plane. If the potential on the outer conductor is set equal
to zero, and that on the inner conductor is set equal to one, then the integral
is found to be the flux of the electric field per unit length and unit voltage.
If one introduces the capacitance per unit length C with

C= e i ds n- (2.39)

and one requires the power to be equal to the voltage-current product, one
finds from (2.38) and (2.37), that VI*KC/e = VI*. Thus, K = e/C, and one
may write for (2.33) and (2.35)

dz
I = (iwC - G)V , (2.40)

d V = iwLI . (2.41)
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The conductance G is given by (Q/e)C, and L = aK is the inductance per
unit length, obeying the constraint

LC=eµ. (2.42)

The fact that the inductance per unit length L is indeed equal to µK follows
directly from an evaluation of the flux per unit length associated with the
current I. This flux W is given by an integral between the inner and outer
conductor, from point (1) on the inner conductor to point (2) on the outer
conductor

(2) (2)

i., x ds ,uH = - 1) i, x ds Ky(iz X VT4P)I1)

(

(2)

_ -IKI f ds VTO = juKI((P1 - 02) = pKI.
(1)

(2.43)

Equations (2.40) and (2.41) are the well known transmission line equations
in complex form. In the absence of conduction, v = 0, their solutions can be
written

V = 2Yo (ae`QZ + be-'Oz) , (2.44)

I = 2Za (ae'Oz - be-'Oz) , (2.45)

with 0 = w l e and Zo = L/C = 1/Yo and where a and b are the forward
and backward wave amplitudes so normalized that the time-averaged power
carried by the waves is given by

dSiz-ExH*=ja12-1b12.

2.3 Transverse Magnetic Waves

(2.46)

Transverse electromagnetic (TEM) waves propagate only in structures that
have two conductors. In a hollow pipe, the modes must possess either a
longitudinal E field or a longitudinal H field. In this section we derive the
equations for modes with longitudinal E fields. For E. we assume a product
solution of the form

EZ = exp(i,3z)-P(x, y) , (2.47)

which is in the form of a wave with the propagation constant 3. When this
ansatz is entered into (2.22) we obtain
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VT,p = (32 - k2),p .

This is the scalar Helmholtz equation of the form

(2.48)

V2 0 + p2 = 0 , (2.49)

with p2 defined as

p2 = k2 - ,62 (2.50)

and subject to the boundary condition that EZ = vanish on the wall,
the so-called Dirichlet boundary condition. It may be worth mentioning that
the same two-dimensional Helmholtz equation governs the displacement of a
membrane of uniform tension tied to a drumhead with the same cross section
as the waveguide. The frequencies of vibration of the membrane are found
by the solution of this eigenvalue problem.

The Helmholtz equation has solutions only for discrete values of p2, with
p2 real and positive, as we now proceed to show. By integration by parts one
may derive the following Green's theorem for two scalar functions and W:

4zt-io. dS SOT ds dS VT VTR (2.51)Jcross
n section

Now set i = and W = V. Using (2.51) and the boundary condition obeyed
by 0, one finds

f-o..
dS *VT _ -p2 J c dS I I2 = -

fcr
dSI VTO1 2 (2.52)

ruse oss
section section section

or

2 - Jcross section dS
p (

.l cross section dS
(2.53)

Thus, the eigenvalue p2 is indeed real and positive. This fixes immediately the
dispersion relation for the propagation constant 3. If the medium is lossless,
(2.50) gives for the propagation constant

/3 =f w2,LE-p2. (2.54)

The dispersion diagram is shown in Fig. 2.4 for the case of a lossless
medium that is nondispersive (e and y independent of frequency). For fre-
quencies below the so called cutoff frequency, the propagation constant is
imaginary; the modes are decaying or growing. Above the cutoff frequency,
the modes are traveling waves. Since the square root has two values, two
waves are associated with each eigensolution, i.e. with each mode. If one takes
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A/P

region

Fig. 2.4. Dispersion diagram for lossless waveguide

--Al- k/p

a rectangular waveguide as an example, one finds the following solutions for
0:

=sin( ax)sin( b y) (2.55)

where m and n are integers. Figure 2.5a shows the potential surface P(x, y) of
the lowest-order TM mode. The lines of steepest descent are the lines of the
transverse electric field; the lines of equal height are the lines of the transverse
magnetic field. The latter are divergence-free (see Figs. 2.5b,c).

The electric field acquires longitudinal components that peak in intensity
at the center of the guide. The total electric field, transverse and longitudi-
nal, is of course divergence-free. An infinite number of solutions exists, each
with its own dispersion relation. The eigenvalues p2,n = (m,7r/a)2 + (n,7r/b)2
increase with increasing order, i.e. increasing m and n. It is easy to prove the
orthogonality of the solutions in the case of a rectangular waveguide. It is
of greater interest to show that two solutions with different values of p2, say
PA and pv, are orthogonal, where the Greek subscripts stand for the double
subscript mn. We use Green's theorem (2.51) for each of the two solutions
and subtract the results. The contour integrals vanish when the boundary
conditions are taken into account, and thus one obtains
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A.9 /2

E-lines at t = 0

Fig. 2.5. Field patterns of some lowest-order TM modes of rectangular waveguide.
(a) Plot of potential 4i for mode m = n = 1. (b) The E field of the propagating
wave for m = n = 1. (c) The E field of the cutoff wave for m = n = 1

a
dSO*V20

na
µ T na

V T µ
section section

(2.56)
2- (pµ - p,.) fcross

dS (P/A = 0 .
section

The integral of the product of the field profiles vanishes for solutions with
different eigenvalues. Now, let us proceed to find the transverse fields. From
(2.21), we find for the transverse H field

-i,QHT = -ikri(i, x ET) . (2.57)
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From (2.20), we obtain

e'QZVTO - i,3ET = x HT) _ -i k2!ET (2.58)

or

ET =i)3e'QZVTq.
P

(2.59)

The transverse E field is proportional to the gradient of (P, or EZ, with the
sign determined by the sign of the propagation constant. The magnetic-field
is obtained from the electric field using (2.57); the magnetic-field lines are
perpendicular to the electric-field lines.

It is convenient to define a transverse field pattern eT(x, y) as

eT(x, y) oc

and normalize it so that

dS I eT (x, y)12 = 1 .

Correspondingly, one defines the normalized magnetic-field pattern as

(2.60)

(2.61)

hT(x, y) = iZ x eT(x, Y) . (2.62)

We shall specialize the discussion in the remainder of this section to lossless
media with v = 0. In this case the characteristic admittance y and charac-
teristic impedance are real and the propagation constant 3 is either real
(above cutoff) or imaginary (below cutoff). For each mode above cutoff, we
may write the general field solution as the superposition of a forward wave
and a backward wave. If one defines a characteristic admittance of the mode,
Yo,

Yo=
k77 WE

k2-p2 w2,E-p2
(2.63)

the electric field and magnetic field can be written in terms of forward- and
backward-wave amplitudes a and b:

ET = 2/Yo (ae'Oz + be-'Oz) eT(x, y) , (2.64)

HT = 2Yo (ae'aZ - be-'Oz) hT(x, y) . (2.65)

The amplitudes are so normalized that the difference of their squares is equal
to the power flow
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2
fcroas daRe(ET x HT) = Ja12 - Jb12. (2.66)

section

We shall use this normalization of the forward and backward waves through-
out the book. The modes possess power orthogonality, i.e. the powers of the
different modes add; there are no cross terms. This is shown easily via the or-
thogonality relation (2.56), but can also be seen on purely physical grounds.
Suppose one considers a solution made up of two waves of different modes
with different propagation constants A. and 13,,. If cross terms existed, the
power would vary with distance as exp ±i(/3 Since power is conserved,
this is impossible, and the cross terms must be zero.

Figure 2.5b shows the field pattern of a propagating wave for the m =
1, n = 1 lowest-order TM mode in a rectangular waveguide. We shall find it
useful to write the transverse electric and magnetic fields in terms of what
we shall call a voltage V(z) and a current 1(z). Thus, (2.64) and (2.65) could
be written alternately as

ET = V(z)eT(x, y) , (2.67)

HT = I(z)hT(x,y) . (2.68)

The ratio V(z)/I(z) defines an impedance Z(z) = V(z)/I(z), which can be
related to the reflection coefficient T(z), defined by

1(z)
=_

6 -e-;2,3z
(2.69)

a

By comparing (2.67) and (2.68) on one hand with (2.64) and (2.65) on the
other hand, one finds the relation

Z(z) - Zor(z)
= Z(z) + Zo

(2.70)

with Z. = 1/Yo. We shall find these relations useful further on.
Equation (2.66) is only valid for modes above cutoff. Mode solutions be-

low cutoff possess transverse electric and magnetic fields that are 90 degrees
out of phase and hence do not propagate power by themselves. Power is
transmitted only when the growing and decaying wave solutions are excited
simultaneously. The power is due to the cross terms between the fields of
these two waves, which are z-independent as required by power conservation.

Before we conclude this section, it is important to note that the orthogo-
nality condition (2.56) implies orthogonality of the transverse electric fields.
Indeed

eTu - eTµ a VT -

Thus, if we evaluate the integral
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f dS eT, ' eTµ oc J dSVT4 OTP4

_ dS VT (!P,,VT!Pµ) - fdsv20µ

over the cross section of the waveguide, use Gauss's theorem, and take into
account the boundary conditions, we find

f dS eT ' eTµ oc -
J

dS P3 f dS

The right-hand side vanishes for p j4 pµ. In this way we have proven the
orthogonality of the transverse electric-field patterns of modes with different
eigenvalues as well. Orthogonality of the transverse electric-field patterns
implies orthogonality of the transverse magnetic-field patterns since eT,,

hTv ' h2µ.

2.4 Transverse Electric Waves

The analysis of transverse electric (TE) waves proceeds completely analo-
gously to that of transverse magnetic waves. Now, a longitudinal magnetic
field is assumed, and Ez is set equal to zero. One assumes solutions of the
form

HZ = exp(i,3z)W(x, y) . (2.71)

The scalar function must obey boundary conditions different from those
obeyed by the function 'P of TM waves. On the perfect conductor, the tan-
gential electric field must be zero. Since the curl of the magnetic field is
proportional to the electric field, we must set

aW
an 0. (2.72)

Indeed, if this derivative did not vanish, if HZ changed within a distance LXn
from the surface of the conductor as shown in Fig. 2.6, there would be a
nonzero line integral around the closed contour, the component of the curl
normal to the plane of the contour would not vanish, and there would be a
tangential electric field at the surface of the conductor.

Except for the change from Dirichlet boundary conditions to Neumann
boundary conditions (2.72), the analysis proceeds as in the case of the TM
waves. In a rectangular waveguide one finds the solutions

= cos ( a_x) cos (b y) . (2.73)

In the present case, meaningful solutions are obtained with either m = 0 or
n = 0. Thus the lowest eigenvalues pertaining to TE waves are smaller than
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n

Fig. 2.6. Derivation of boundary condition for T/

those of TM waves. The mode with the lowest cutoff frequency is a TE wave.
This is true for any waveguide cross section since the Neumann boundary
condition (2.72) is less confining than the Dirichlet boundary condition. The
drumhead analogy may be helpful. The Neumann boundary condition allows
the membrane to move vertically along the rim of the drumhead without
friction, only its slope is confined to be zero.

The normalized dispersion diagram of TE waves is the same as that for
TM waves. Green's theorem (2.51) can be used to prove the orthogonality
relation

(pv-pt,)f
cross

section

(2.74)

The general solution is the superposition of forward and backward traveling
(or decaying, if cutoff) waves. For one single propagating mode in a lossless
waveguide, one has

ET = 2/Yo (ae'QZ + be-'AZ) eT(x, y) , (2.75)

HT = 2Yo (ae'Oz - be-'AZ) hT(x, y) , (2.76)

where hT(x, y) oc iVTO (compare (2.60)) and hT(x, y) = iZ x eT(x, y). Now,
the characteristic admittance is defined by

k2 - p2 w2µe - p2
Yo= k =

wp
(2.77)

Some field patterns of TE modes are shown in Fig. 2.7. The power flow for
TM waves is as in (2.66). The power of modes with different eigenvalues is
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lines of steepest descent

lines of equal height

(a)

H-line

E-line

y

x

V

(b)

H-line

H-line

(C)

Fig. 2.7. Field patterns of some lowest-order TE modes of a rectangular waveguide.
(a) Plot of potential W for m = 1, n = 0 mode. (b) The transverse field patterns of
the m = 1, n = 0 mode. (c) The E and H lines of the propagating m = 1, n = 0
wave. (d) The E and H lines of the cutoff wave m = 1, n = 0: the fields are 90°
out of phase
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additive; cross terms vanish. To prove this one may use the orthogonality con-
dition (2.74), or again resort to Poynting's theorem and the z-independence
of the time-averaged power flow.

The TE modes and TM modes are power-orthogonal, even if their eigen-
values coincide. This follows from the fact that the transverse electric field of
a TM mode is the gradient of a potential, and the transverse magnetic field
of a TE mode is a gradient as well. Thus, consider the contribution of the
transverse electric field of the TM mode and the transverse magnetic field of
a TE mode:

fcross
dS2z . eT,TM x hT,TE = Zz

oaa
section

dS VTP X VTW*

= iz jc'o" dSVT X (!PVTTI*) - 2z I,,", dS4P(VT X VTTI*)
section section

(2.78)

The first integral is a curl that can be evaluated as a contour integral around
the boundary of the waveguide, on which 0 vanishes. Thus this contribution
is zero. The second integral contains the curl of a gradient and thus its kernel
is zero. Hence we can conclude that TE and TM modes are power-orthogonal
even if they possess the same eigenvalues.

The orthogonality relation (2.74) refers to the scalar functions W and TlN,.
Just as at the end of Sect. 2.3, a simple manipulation shows that orthogonality
of the transverse field patterns is implied as well. With proper normalization
one has

J dS hT hT=6p AV

As mentioned earlier, the orthogonality of the magnetic-field patterns implies
the orthogonality of the electric field patterns and vice versa.

2.4.1 Mode Expansions

We have found that a conducting enclosure supports an infinite number of
modes. We also found that not all the modes are propagating modes at a
given frequency of excitation w = k/ ji (for a lossless medium). When
k < p,,, the mode is cut off. The existence of mode cutoff is important from
a practical point of view. If an excitation consisting of several propagating
modes travels down the guide, the different modes interfere differently at
different waveguide cross sections. If the excitation is composed of a band of
frequencies, the interference of the different modes is a function of distance
along the guide. Such a behavior is unacceptable if the signal propagation
is to be distortion-free. Hence, in most practical applications frequencies of
excitation are used that are in the band in which only the dominant TE
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mode is above cutoff, and all other modes are below cutoff. In the case of a
two-conductor transmission line this mode is, of course, the TEM mode.

We now look at the excitation of the modes at one cross section. In order
to determine the excitation of the modes, mode orthogonality conditions have
to be invoked. This exercise is then a good example of the use of orthogonality
conditions, which will be applied again in Sect. 2.9. The intent is to find the
power radiated from a wire across the waveguide carrying a current Io at
frequency w. The current can be thought to be produced by excitation of the
waveguide by a coaxial cable as shown in Fig. 2.8.

T
a

I

b

10 is current amplitude
at this planeIf

radiated power f- y = t - radiated power

z=0

feeder cable

Fig. 2.8. A waveguide fed by a coaxial cable

The problem can be formulated in terms of an excitation by a current
sheet K(rT) across the waveguide at one cross section, say at z = 0. The
field to either side of the sheet is a superposition of an infinite set of E and
H modes, propagating or decaying away from the sheet in the +z and -z
directions. The transverse fields are given by

V2
a,eT(x,y) ,E_

v
;T(0+)
Yv

HT (0+) _ 2YovavhT(x, y) for z > 0

and

(2.79)

F2
ET(0-) _ bveT(x, y) ,

Y0
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HT(0_) = - y) for z < 0 . (2.80)

Across the plane of the current sheet, the magnetic field experiences a dis-
continuity (see Fig. 2.8)

iZ x [H(0+) - H(0_)] = K , (2.81)

whereas the electric field is continuous:

iZ x [E(0+) - E(0-)] = 0 . (2.82)

After multiplication by the mode patterns eTN, and hTN, and integrating over
the cross section, one findfs, using the orthogonality conditions,

ak,, + bN, _ - 1
J

dS i x K hTµ (2.83)
2Yoµ

and a,,, - bA = 0. From these two equations one may compute the amplitudes
of the modes. If all modes but the dominant mode (denoted by v = 0) are
below cutoff, the power radiated in both directions by the current sheet is
simply

power = 21a012 =
1

Yoo J
2

(2.84)

Let us now specialize to the problem at hand. The dominant mode of a
rectangular waveguide has the normalized transverse magnetic-field pattern

xhTO = i cosba I a I . (2.85)

A current in a thin wire is composed of waves with a propagation constant
equal to the free-space propagation constant of a plane wave in a medium
characterized by u, c. (To understand why this is the case, think first of
a coaxial cable with a thin center conductor. The propagation constant is
k = w µe. Now remove the outer conductor. If the center wire is thin, the
energy storage near the wire outweighs the energy storage farther away, and
hence the current distribution is not affected by the removal of the outer
conductor.) If the wire terminates, as in an antenna, the distribution is
[-I,,/ sin(k2)] sin[k(y - B)] if Io is the current at y = 0 and .£ is the length of
the wire. Hence

i [k( - £)]6(K - 2)i 86)2n y x a/ .= - 'sin(k2) s ( .

Combining (2.84), (2.85), and (2.86), we find

power =
2 [1 - cos(ki)]2_ (2.87)

k2abYoo sin2 kP



2.5 Energy, Power, and Energy Velocity 59

2.5 Energy, Power, and Energy Velocity

The complex Poynting theorem of Sect. 1.7 developed expressions for the
energy stored in matter when the medium is dispersive. The approach was
in the form of a thought experiment in which excitations were applied that
grew or decayed at a rate a. The constitutive relations were evaluated to
first order in the growth or decay rate. In this way derivatives with respect
to frequency appeared in the energy density expressions. In this section we
follow a somewhat different approach. Derivatives are taken with respect to
frequency of the complex form of Maxwell's equations and identities are de-
rived therefrom. One of the findings is that the group velocity of a waveguide
mode is the velocity of energy propagation.

2.5.1 The Energy Theorem

In the analysis of waveguide modes, we assumed that the waveguide was
filled uniformly with an isotropic medium with a scalar dielectric constant
and magnetic permeability. Had we not made this assumption, we would
have found that TE waves and TM waves do not exist independently, but
are coupled by the medium and/or the boundary conditions. The derivation
in this section is not more difficult if tensor media are included. Hence, we
shall develop the formalism in this, more general, context. Inside the volume
V of a waveguide, formed by the waveguide walls and two cross sections at
z = zl and z = z2, Maxwell's equations hold:

(2.88)

(2.89)

The fields are functions of position r and of frequency w. First we take the
derivatives with respect to w of (2.88) and (2.89):

V x
aE

= i 1 µ+
w a I . H+ iwµ -- ,

Ox 1 E-iwE E

(2.90)

(2.91)

Then we dot-multiply (2.90) by H*, (2.91) by -E*, the complex conjugate
of (2.88) by 8H/ew, and the complex conjugate of (2.89) by -8E/8w. We
then add the resulting equations and cancel terms (noting that µ and E are
Hermitian tensors). We obtain
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ExH*+E*x HI

=i H* p+waw I H+E* (+) E1

Integrating over the volume V and using Gauss's theorem, we have

6(ExH*+E*x 1.dS

=if .H+E*. (+

We may identify the integral on the right-hand side of (2.92) as four times
the time-averaged stored energy w in the volume V:

11

w =

4

f (+w) H + E* (+w) . EJ dV. (2.93)

Using this fact, we may write for (2.94)

d(aE xH*+E* x aH dS=4iw. (2.94)
W_ w

(2.92)

Equation (2.94) is the energy theorem. It relates frequency derivatives of
the electric and magnetic fields on the surface S to the energy stored in the
volume enclosed by S.

2.5.2 Energy Velocity and Group Velocity

The theorem (2.94) can now be used to find a relation for the energy ve-
locity. We shall identify the fields E and H in (2.94) with a single wave
solution, with the propagation constant 0, in a uniform waveguide filled with
an isotropic, uniform medium characterized by p, e. The surface S is formed
by the waveguide walls and two reference planes at z1 and z2, a distance
z2 - z1 = L apart. We have for the left-hand side of (2.93)

.f(E x H* + E* x _H l
dS

(OEm x HT + ET x aH T ) . idS
Z2

(2.95)

z,

The transverse electric and magnetic fields of a single wave of amplitude a of
either a TE, a TM, or a TEM mode can be written
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ET = 2/Yoae'AZeT(x, y) , (2.96)

HT = 2Yoae'aZhT(x, y) . (2.97)

The integral on the right-hand side of (2.95) involves only quantities that
change between the two cross sections. The only z-dependent quantity intro-
duced by the frequency derivative derives from the factor exp(i3z):

a

aw (eiRZ) =
iz! e'QZ . (2.98)

Therefore, using (2.94) and (2.98) in (2.95), we find

da iZ eT x hT = 4iw.4i (z2 - zl) do jal2 J (2.99)
oae

section

Since the field patterns are normalized, and the power p in the wave is equal
to JaJ2, we conclude that

w L (2.100)= v9
/

The derivative &w/d/3 is an energy velocity, the ratio of power flow to energy
per unit length. The same quantity is also known as the group velocity, the
velocity of propagation of a wavepacket with a spectrum consisting of a nar-
row band of frequencies. Indeed, if one adds two waves with the dependences
exp[i/3(w)z] exp(-iwt) and exp[i/3(w + Aw)z] exp[-i(w + aw)t] one obtains

exp {i [,Q(w)z - wt]} + exp(({i [/3(w + Zw)z - (w + Aw)t]}

= exp {i [3(w) z - wt] j { 1 + exp ILAW (LO z - t)
J

y
(2.101)

The wavepacket has an envelope that goes periodically to zero at distances
A = 27r(dw/d/3)/aw and travels at the so called group velocity dw/d/3. The
energy theorem has shown that the group velocity is also the velocity of
energy propagation. This is not surprising. If one constructs a wavepacket
in the manner of (2.101), the fields vanish periodically at the nodes of the
wavepacket. No power can cross the cross sections of zero field. Hence the
energy of the excitation is trapped between the nulls and travels at the speed
of the nulls, at the group velocity.

2.5.3 Energy Relations for Waveguide Modes

Next, we derive a property of waves in uniform waveguides that follows di-
rectly from the complex Poynting theorem, (1.88) of Chap. 1, which is re-
peated below:
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p (2.102)

Q is the so-called reactive power generated per unit volume and is given in
(1.92). (Note that Xe and Xm are Hermitian tensors.)

.Q = 2iw(E* EoXe- E - H* /1oXm - H) (2.103)

Combining (2.102) and (2.103) and using the definitions of the dielectric and
permeability tensors, we obtain

V

1Im(E x H*) - 2w(iLIHI2 - EIEI2) = 0 (2.104a)

for the case of an isotropic medium as analyzed in the present chapter. We
integrate this equation over a volume of length L, between the cross sections
zl and z2 in the waveguide. We further assume that the fields are those
of a single traveling wave and the guide is lossless so that all quantities in
(2.104a) are z-independent. The integral of the divergence is zero, because
the Poynting fluxes through the two end faces of the volume cancel, and there
is no Poynting flux at the waveguide walls. In fact, the theorem that follows is
not restricted to waveguides with metallic walls. The only requirement is that
no Poynting flux exit radially through a cylinder enveloping the waveguide.
In this more general sense, the theorem applies to dielectric waveguides and
optical fibers, as discussed in the next chapter. We obtain

f waveguide
uI HI2dS = J --guide

EIEI2dS .

cross section cross section

(2.105)

This equation can be interpreted as stating that the time-averaged electric
and magnetic energies per unit length in a traveling wave are equal to each
other. This interpretation holds only for a nondispersive medium. The energy
storages in a dispersive medium are more complicated and, as pointed out in
the example of a plasma, consist of both the field energies and the energies
stored in the excitation of the medium. In this more general case (2.105) still
holds, but cannot be interpreted so simply.

2.5.4 A Perturbation Example

Before we conclude this section we introduce some concepts of perturbation
theory, which we shall employ throughout the text. We can test the results
against the equations obtained for modes in metallic waveguides. As in the
case of (2.105), the perturbation theory developed here is applicable to any
waveguide that is uniform along the z direction, such as a dielectric waveguide
or an optical fiber.
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Modes of uniform, lossless waveguides always appear in pairs: a forward-
propagating wave a of spatial dependence exp(i/3z) is paired with a backward
wave b of dependence exp(-i/3z), where /3, the propagation constant, is real.
This is the direct consequence of time reversibility of Maxwell's equations in
their complex form, as discussed in Sect. 1.1. (Note, however, the "caveat"
concerning the reversal of a d.c. magnetic field in the case of the Faraday
effect.) Let us concentrate on the solution for the forward wave a of a par-
ticular mode v. We shall omit the subscript denoting this particular mode
in the subsequent analysis for simplicity. Clearly, the amplitude a obeys the
differential equation

da
= i/3a . (2.106)

dz

Suppose next that the waveguide has some small loss. The loss will introduce
attenuation, and (2.106) is modified to

da- = [-Im(/3) + i Re(f)]a , (2.107)

where Im(/3) is the attenuation constant. The attenuation constant can be
computed from an energy conservation argument: the spatial rate of change
of power p along the waveguide must be equal to the power dissipated per
unit length:

dp
dz

=_ 2Im(/3)p = -power dissipated per unit length . (2.108)

Since the power is quadratic in the fields, its spatial rate of decay is twice
that of the fields. Now, the power p is equal to the product of the group
velocity and the energy w per unit length. Hence, we find from (2.108) and
(2.100)

d [Re(/3)] power dissipated per unit length
, (2.109)2Im(6) =

w
w/L

d

where we note that the group velocity is to be evaluated for a lossless guide
for which Re(/3) = /3. This equation determines Im(/3). Let us determine how
it works in the case of a lossy, dissipative waveguide. In this case we can find
the complex propagation constant directly from (2.50), which is applicable
to both transverse electric and transverse magnetic waves:

/3 = k2 - p2 = w2pf + iW/Q - p2

iwµQ
2,. LO-µe - p +

2 w2µe - p2

(2.110)

Thus, we have found that
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2Im(/3) = Re(i3)

Next, we show that (2.111) is consistent with (2.109). The inverse group
velocity is

d/3 2wµE + w2 (µaE/aw + Eap/aw)
dw ,Q

The energy per unit length is

w

L
1 I E + waE

J
JE12dS

4 L aw waveguide
rose section

+ µ + Lo J
cr

aegnide
IHI2ds]oas

section

1 (µ+a)I I IE12ds,
4 a J µ \ aw

cross los
uctio

n

(2.112)

(2.113)

where we have made use of the theorem (2.105). The power dissipated per
unit length is equal to

power dissipated per unit length = 1v J IEI2dS . (2.114)
2 wavegnide

cross section

Combining (2.112), (2.113), and (2.114) with (2.109), we see that the per-
turbational formula gives a result consistent with the direct derivation of
the attenuation constant. The important fact to remember is that the incor-
poration of loss by means of a perturbation formula is a powerful method
applicable in all practical cases, since waveguides that have a large loss, a
large change of amplitude per wavelength, are of little practical use.

2.6 The Modes of a Closed Cavity

The problem of a microwave cavity fed by a number of incoming waveguides
can be conveniently formulated and solved by considering first the case of a
perfectly closed cavity, i.e. a region of space completely enclosed by perfectly
conducting walls. The present section is devoted to a study of the resonant
modes in such a closed cavity. Consider a region of space filled with a uniform
medium that is isotropic and characterized by a scalar dielectric permittivity
E, magnetic permeability µ, and conductivity a. This region has a volume
V and the surface S bounding the volume is formed from lossless walls. For
the sake of generality, we shall assume that part of the surface, S', is formed
from a perfect electric conductor and the part S" is formed from a perfect
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magnetic conductor. The inclusion of magnetic walls in the analysis gives it
greater flexibility, which will be of use later.

Inside the volume V enclosed by the surface S the electromagnetic fields
have to satisfy the source-free Maxwell equations

V x E = -µ4H , (2.115)

V

V 0 (2.118)

In the above equations the vectors E and H are space- and time-dependent.
This means that the dielectric constant c, the conductivity a, and the per-
meability µ must all be constants, independent of time. Hence the analysis in
this section assumes that the medium in the resonator is nondispersive. This
is only a temporary restriction. We shall find out that the modes derived
in this section have purely geometric properties and hence are not medium-
specific. We shall be able to use them in an analysis of resonators containing
dispersive media. The fields in (2.115)-(2.118) have to satisfy the boundary
conditions

nxE=O, onS'; (2.119a)

nxH=O onS". (2.119b)

Combining (2.115) and (2.116) one finds

z
Vx(VxE)+µe zE+µv- =0. (2.120)

We attempt a solution by separation of variables. The electric field is written
as a product of a function of time and a function of space:

E = V(t)e(r) . (2.121)

The function of space has to satisfy the appropriate boundary conditions of
the enclosing surface and is assumed to obey the eigenvalue equation

V x [V x e(r)] = pie(r) . (2.122)

The mode pattern e(r) has nonzero curl. It is convenient to assign zero diver-
gence to this pattern, leaving the representation of fields with divergence to a
different set of modes. The modes with nonzero curl are called "solenoidal".
Since the identity
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V x [V x e(r)] = V[V e(r)] - V2 e(r)

holds, we may rewrite the eigenvalue equation as

O2e(r) + p2e(r) = 0. (2.123)

Equation (2.123), subject to the boundary conditions (2.119a) and (2.119b),
has solutions that are functions solely of the geometry of the resonator walls
and are independent of the medium filling the resonator. One very simple
example is a cavity made of a rectangular waveguide of side lengths a and b
and shorted with two conducting planes at z = 0 and z = c. One may pick
standing wave solutions for the waveguide modes and choose the propagation
constant so that the tangential electric field at the two shorting planes is zero.
In this case one finds a triply infinite set of eigenvalues given by

pmnq= (ate)2+( b )2+ \qc /2
where m, n, and q are integers. In order to satisfy (2.120), the function of
time must satisfy the equation

d2 d
Eydt2V +apwtV +p2V = 0 . (2.124)

The divergence-free modes found thus far are called solenoidal. If the cavity
contains free charges, the solenoidal modes are not sufficient to characterize
the field. There must exist modes with divergence and no curl, the so-called
divergence modes. They are derivable from a potential:

e(r) = -V (r) . (2.125)

The potential can be chosen to obey the Helmholtz equation:

V20 + p20 = 0. (2.126)

This eigenvalue problem, subject to the boundary conditions on 0 and the
normal derivative of 0 on the surfaces S' and S", respectively, has an infinite
number of solutions.

Before we study the eigenvalue equations (2.122) and (2.126), it is of
interest to show that one could have proceeded by solving Maxwell's equations
in terms of the magnetic field. One could have set

H(r, t) = I(t)h(r) . (2.127)

Elimination of the electric field from (2.115) and (2.116) leads to an equation
for the magnetic field of the same form as (2.120):

82
Vx(VxH)+EµateH+QµatH=0. (2.128)
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The magnetic field pattern h(r) is chosen to obey the eigenvalue equation

V x [V x h(r)] = p2h(r) , (2.129)

and the differential equation for the time-dependent amplitude I(t) of the
magnetic field is

d 2
dt2l +vµdtl + p2I = 0 . (2.130)

Since the time dependence of I(t) as predicted from (2.130) must be the
same as that of V (t) in (2.124), it follows that the eigenvalue p2 in (2.122)
and (2.129) must be the same.

There are also divergence solutions for the magnetic field. They are the
gradient of a potential

h(r) = -VT/ . (2.131)

W can be chosen to obey the scalar Helmholtz equation

V2T/ +p2'I'=0, (2.132)

with the boundary condition that dW/dn = 0 on S' and W = 0 on S".
In concluding this section, we reemphasize that the eigenvalue equations

(2.122), (2.126), (2.129), and (2.132), with the associated boundary condi-
tions, involve only the geometry of the resonator and are independent of the
uniform material filling it. Thus, the modes obtained by solving the eigen-
value equations can be utilized for an expansion of the fields in a resonator of
the same geometry, but filled with an arbitrary medium; and, more generally,
in a resonator driven by sources.

2.7 Real Character of Eigenvalues
and Orthogonality of Modes

The divergence-free electric- and magnetic-field patterns, e(r) and h(r) de-
rived in the preceding section can be shown to satisfy certain orthogonality
relations. The proof of the orthogonality relations bears a close resemblance to
the previously presented proofs of the orthogonality properties of the waveg-
uide modes. One makes use of a three-dimensional vector Green's theorem,
which we now proceed to derive. One starts with Gauss's theorem:

(2.133)

Here D is an arbitrary three-dimensional complex vector function of space,
restricted only by the stipulation that it be once differentiable. We substitute
for D the expression
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D=Ax(VxB), (2.134)

where, again, A and B are arbitrary complex three-dimensional vector func-
tions of the spatial variable, restricted only by the stipulation that they are
once and twice differentiable, respectively. Making use of the following vector
identity (differentiation by parts),

(2.135)

we obtain, combining (2.133)-(2.135),

f[(V x A).(V x B)-A.V x (V x B)J.dV
(2.136)

Equation (2.136) is the first vector Green's theorem. The second vector
Green's theorem can be obtained from this by interchanging the functions
A and B and subtracting the resulting relation from (2.136). Thus we obtain
the second vector Green's theorem.

f[B.Vx(VxA)-A.Vx(VxB)]dV
(2.137)

[Ax(V xB) - Bx(V x

A in (2.136) an electric-field pattern E which
is a solution to (2.122) pertaining to a particular eigenvalue p,,. For B, we
substitute its complex conjugate:

A=e,,, B=e*,.

The equation satisfied by e is

Vx(Vxe')=p,e,,.

(2.138)

(2.139)

We interpret the integration in (2.136) as being carried out over the entire
volume of the closed cavity enclosed by the lossless wall. By virtue of the
boundary conditions satisfied by e on S' and by V x e,, which is proportional
to h,,, on S", (2.119a) and (2.119b), the surface integral on the right-hand
side of (2.136) vanishes:

dS=0. (2.140)
is"S,

Solving the remaining expression for per, we obtain
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2 f (V x e") (0 x e")*dV
(2.141)

Equation (2.141) shows that the eigenvalue p2,' of (2.139) must be real and
positive for fields satisfying the boundary conditions (2.119a) and (2.119b).

Next, we turn to the proof of the orthogonality relationships. In (2.137)
we make the substitutions

A=e", B=eµ. (2.142)

Again, extending the integral over the entire volume of the closed cavity, the
surface integral on the right-hand side of (2.137) vanishes and there results

(per-pµ)J (2.143)

where we have taken into account that the fields e" and eµ have to satisfy
equations of the form of (2.139) with real eigenvalues p2. From (2.143) we
conclude that

fev.edV=O , p"#p,,. (2.144)

Field patterns pertaining to different eigenvalues are orthogonal in the sense
of (2.144). The case in which two distinct field patterns have the same eigen-
value p is called degeneracy. In such a case, orthogonality is not automatically
assured. It is possible, however, to construct an orthogonal set of field pat-
terns even in a degenerate case by using linear combinations of the degenerate
modes. Assuming that such an orthogonalization has been carried out on the
entire set of modes, one may express the orthogonality condition in the form

fc" e* dV = V6"µ , (2.145)

where in addition it has been assumed that the field patterns have been
normalized so that the volume integral of the square of the field pattern is
equal to the volume of the cavity. Analogous orthogonality conditions can be
proved for the magnetic-field patterns.

It is clear that the magnetic-field patterns are proportional to the curl of
the electric-field patterns. Setting

V x e"(r) = p"h"(r) , (2.146)

one finds that the magnetic-field patterns are automatically normalized. In-
deed, introducing (2.146) intoo (2.136), we find

p"pp, J h" h* dV - p2 J e" e* dV = 0. (2.147)
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This leads to the orthogonality condition

J by - hµ dV = Vbµ . (2.148)

Since the eigenvalue p2 of (2.139) is real, it is always possible to choose
the field patterns eµ to be real, i.e. linearly polarized at every point in the
cavity. The direction of the polarization may vary from point to point. Indeed,
suppose that we have found a complex solution of (2.139). Then both the real
and the imaginary parts of the complex solution must be solutions of (2.139).

An analogous analysis can be carried out for the divergence modes of the
electric and magnetic fields. One finds that they have real, positive eigenvalues
p2 and also obey orthogonality conditions.

The solenoidal modes are orthogonal to the divergence modes as well.
We shall prove this in the case of the modes of the E field. We denote the
solenoidal mode by the subscript v and the divergence mode by the subscript
a, and evaluate the volume integral f ev - e,, dV over the volume of the res-
onator. The divergence mode can be expressed as the gradient of a scalar
potential. We thus haven

fey e,, dV=-J ev - WadV

Paev - dS+J ,,V-evdV.
s,+s"

(2.149)

Both integrals on the right-hand side of (2.149) are zero. The second integral
contains the divergence of the solenoidal mode, which is zero by definition.
The surface integral contains no contribution from the surface S", over which
the electric field is tangential to the surface. The contribution from the surface
S' looks, at first, as though it is not equal to zero. However, since the potential
must be constant on S' to satisfy the boundary condition, this integral is
proportional to the net flux of the mode v passing through the surface S.
This flux must be zero for a solenoidal mode, for which field lines do not
appear or disappear. Since no flux can escape through S", no net flux can
pass through S'. Hence, we have proven the orthogonality of solenoidal and
divergence modes. An analogous analysis can be applied to the modes of
the magnetic field to prove that the solenoidal and divergence modes are
orthogonal.

The proof that the eigenvalues of (2.123) and (2.126) are real and the
proof of the orthogonality of the eigensolutions is the framework for the
mode expansion of any electromagnetic field in a closed cavity. It is also the
starting point for the quantization of electromagnetic fields, as is done in
Chap. 6. In anticipation of the quantization, we shall limit the subsequent
analysis to lossless closed resonators, a = 0. In a closed cavity containing no
sources, the divergence modes remain unexcited, since they require electric
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and magnetic charge distributions for their existence. The electric field in the
resonator can be written

E(r,t) _ Vµ(t)eµ(r) , (2.150)

and the magnetic field can be expressed by

H(r, t) = E II(t)hµ(r) . (2.151)
Fi

The E field patterns e,,,(r) and the magnetic-field patterns hI,(r) are, of
course, related to each other. If one inserts (2.150) and (2.151) into (2.115)
and (2.116) one obtains

VI(t)V x eµ(r) dtI,.(t)hµ(r)

and

Iµ(t)V x h. (r) _ -E
dt

.(t)eµ(r) .

{6

(2.152)

(2.153)

From (2.139) and (2.146), one sees that V x hµ(r) = pµeI,(r). One then finds

d
EdVA = pµ1µ

Further, from (2.146) and (2.152) it follows that

fLdlµ=`pµVA

(2.154)

(2.155)

V x h(r) = pN,e(r) . (2.156)

Equations (2.154) and (2.155) are the equations of a harmonic oscillator,
with Vµ identifiable with the position and I,,, with the momentum. This is
the starting point for the quantization of the electromagnetic field.

If the fields are specified at t = 0, then the use of the orthogonality
conditions provides the initial values for the coefficients Vµ (0) and Iµ (0):

Vµ(0) = J dV E(0,r) . eµ(r)/Vi Iµ(0) = h,, (r) IV .

(2.157)

In a closed resonator, modes can always be defined so that their field
patterns are real. Then the electric field and the magnetic field of a mode
are 90° out of phase. Ring resonators formed from waveguides closing on
themselves propagate traveling waves. These can be constructed from two
standing waves that are spatially displaced by a quarter wavelength. The
preceding equations are equally applicable, but note has to be taken that the
field patterns e(r) and h(r) are complex functions of space.
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2.8 Electromagnetic Field
Inside a Closed Cavity with Sources

Next, we determine the fields inside a closed cavity within which there are
electric and magnetic current distributions varying sinusoidally with time.
The current distributions are assumed to be specified. They play the role
of driving currents, capable of supplying power so that a sinusoidal steady
state is established within the cavity. The power dissipated by the losses in
the cavity is supplied by the current distribution. This idealized problem will
find an application in the next section when solving for the fields in an open
cavity driven through a waveguide. Denote the electric current density dis-
tribution by Je and the magnetic current density distribution by J,,,. These
current distributions are complex vector functions of the spatial variable r.
The electric and magnetic fields inside the cavity satisfy the equations

VxE=iwjH-J,,,, (2.158)

VxH=vE-iwfE+Je. (2.159)

The cavity is assumed to be filled with an isotropic medium characterized by
a scalar dielectric permittivity e, magnetic permeability p, and conductivity
v. Since the equations are cast in the frequency domain, the material param-
eters may be functions of frequency in the analysis to follow. We shall take
advantage of this fact at an appropriate stage.

The electric field has, further, to satisfy the divergence relation

V.fE=p. (2.160)

Since we have assumed a magnetic current distribution, we must include the
possibility of the existence of a magnetic charge density. The magnetic field
has to satisfy the equation

V µH = p,,, . (2.161)

In order to solve the present problem we take advantage of the complete set
of solenoidal and divergence modes found for the empty, undriven cavity. We
expand the electric- and magnetic-field patterns within the cavity in terms
of these:

E= E V.e,., (2.162)

r.=a,v

H = E I,,h,, .
r.=a,v

(2.163)
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We distinguish solenoidal modes from divergence modes by the subscripts v
for the former and a for the latter. In these equations V,,, I,,, Va, and IC,
are complex expansion coefficients, as yet undetermined. In contrast to the
expansion carried out in Sect. 2.7, these coefficients do not have the time
dependence est which is natural to any one of these individual modes when
undriven. Indeed, now the time dependence is sinusoidal by assumption, at
the frequency w of the driving current distribution.

Introducing (2.162) and (2.163) into (2.158) and (2.159), one obtains
expressions for the expansion coefficients V,c and I,,. It is convenient here
to separate the analysis of the solenoidal-mode expansion from that of the
divergence-mode expansion. Dot-multiplying (2.158) by h*, using (2.146), in-
tegrating over the volume of the cavity, and using the mode orthogonality
property, one obtains

iwµl - 1

V
f J,,, - h' dV . (2.164)

Similarly, using the expansions (2.162) and (2.163) in (2.159), dot-multiplying
by e*, and integrating over the volume of the cavity, one obtains

P'1' = (a - iwe)V + 1

V
f Je e' dV . (2.165)

Similar expressions can be obtained for the expansion coefficients of the di-
vergence modes:

0 = iwµla - I fJnhxdV (2.166)

0=(a-iwe)Va+v fJe edV. (2.167)

Equations (2.164)-(2.167) suggest the equivalent circuits that are shown
in Fig. 2.9. It should be noted that the expansion coefficients V and I
that play the role of voltage and current in the equivalent circuits are in-
terconnected by (2.164) and (2.165). In contrast, the coefficients Ia and Va
are independent and, correspondingly, the equivalent circuits of (2.166) and
(2.167) are independent. Solving for V and I separately, from (2.164) and
(2.165) one obtains

Vv _ (iwa/V) f Je e; dV - f J,,,, h* dV
PV-k2 (2.168)

IV = f Je e*dV - [(a - iwe)/V] f h*dV .

PV - k2
(2.169)
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Fig. 2.9. Equivalent circuits for modes of driven cavity

Correspondingly, we have for I,,, and V,,,

I. 1 J,,,, hadV ,
iwµV

(2.170)

V. = 1 J1 Je eadV. (2.171)
(a - iwe)V

The equations developed in this section will find direct application in the
analysis of an open cavity driven through a number of input waveguides.

2.9 Analysis of Open Cavity

The analysis in the preceding sections was devoted to the study of completely
closed cavities. The case of an undriven cavity was taken up first. Then
cavities containing driving current density distributions were studied. The
case of a driven cavity was an application of the mode analysis of the undriven
cavity. The study of the open cavity to be undertaken in this section can be
reduced to the previously analyzed problem of a closed, driven cavity. This
we now proceed to show.

An open microwave cavity is a metallic enclosure with one or more holes,
through which electromagnetic energy may be supplied to, or extracted from,
the cavity via feeding waveguides. Consider the cavity of Fig. 2.10. It is fed
by N waveguides, in which we choose convenient reference planes. Now, form
a closed cavity from the open cavity of Fig. 2.10 by placing at all reference
planes in the incoming waveguides perfect magnetic shorts. The closed cavity
possesses a complete set of solenoidal and divergence modes. Any field inside



2.9 Analysis of Open Cavity 75

Fig. 2.10. Cavity fed from N waveguides

the region of the closed cavity that satisfies all the boundary conditions can
be expanded in terms of these modes. The fields in the open cavity have a
nonzero tangential magnetic field on the reference cross sections and, there-
fore, violate the boundary conditions imposed on the fields (and modes) in
the closed cavity. These fields cannot be expanded directly in terms of the
modes of the closed cavity. However, we may adapt the fields of the open
cavity so that they can be expanded in terms of the complete set of modes
of the closed cavity by constructing an artificial field which is identical, in
every respect, to the actual physical field in the open cavity throughout the
volume of the cavity, but has a tangential magnetic field that vanishes on the
reference planes. Accordingly, the tangential magnetic field of the artificial
field experiences a discontinuity at the reference planes. Denote the field of
the open cavity at the ith reference plane by HTi. At the ith reference plane,
the artificial field constructed from the field of the open cavity changes from
HTi to zero within a very small (theoretically infinitesimally small) region
in front of the reference plane. Such a discontinuity is created by an electric
surface current of magnitude

Ki = -n x HTi , (2.172)

where n is the normal to the reference plane pointing outwards from the
cavity. The artificial field is expandable in terms of the closed-cavity modes.
It is a field in the closed cavity driven by the current distributions on the
various reference planes. We have reduced the problem of the analysis of an
open cavity fed by incoming waveguides to the problem of a closed cavity
driven by surface current distributions in front of the N reference planes of
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the original open cavity, with the reference planes themselves replaced by
perfect magnetic conductors.

Equations (2.168)-(2.171), developed for the case of a closed, current-
driven cavity are thus directly applicable to our present problem. The electric
current distribution density Je consists of surface current density distribu-
tions (2.172) at the N waveguide cross sections. The surface current density
distributions (2.172) can in turn be related to the fields existing in the feeding
waveguides. Indeed, the transverse magnetic field appearing on the right-hand
side of (2.172) must be expressible in terms of the waveguide modes of the
ith waveguide. One has

HTi = In,ihTn,i
n

where the subscript n denotes the nth mode in the ith waveguide and the
origin of the z coordinate is chosen conveniently at the reference cross section
in the ith waveguide with the z axis directed into the cavity. Using (2.172)
and (2.173) in (2.168)-(2.171), one has

_ iwµ
Inj eTn

(2.174)

VV (p2 - v)v
,j e; dS ,

V« =
1 E In,j eTn,j(Q - iWE)V n,j

e* dS. (2.175)

(2.173)

In (2.174) and (2.175) we have made use of the fact that

n = -i, and izXhTn,j=-eTn,j. (2.176)

In order to find a relation between the amplitudes Vn, j and In, j of the modes
in the feeding waveguides, we have to express the electric field at the reference
cross section in terms of the waveguide modes on one hand, and in terms of
the cavity modes on the other hand. One has

Vn,j eT,n,j = E V"e',
n K=Q,V

(2.177)

Using the orthogonality condition on the transverse field patterns of the mag-
netic field in the waveguide, eTn,j, one obtains from (2.177)

Vm,j V. e,. ' CTm,j dS ,
rc=a,V

(2.178)

where the integration is carried out over the jth reference cross section. In-
troducing (2.178) into (2.174) and (2.175), one has
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Vm,j = Y, Zmn;jiln,i
n,i

with

_ -iwµ
ZTnn;jx = 2 2 eTm,j ' e dS eT,, i eV dS

(pv - k)V fi i

a

(2.179)

(2.180)

Equations (2.179) and (2.180) will be exploited in Chap. 5 in connection with
the analysis of multiports. Equation (2.179) is the impedance matrix descrip-
tion of a multiterminal network. The terminal "voltages" are proportional to
the terminal "currents"; the proportionality constants are the elements of an
impedance matrix. The matrix is of order M x N, where M is the number of
cavity modes and N is the total number of waveguide modes in all waveguides
coupled to the cavity. In principle, there is an infinite number of resonator
modes; in practice it suffices to include only a few in the analysis.

2.10 Open Cavity with Single Input

We illustrate the general formalism that led to (2.179) and (2.180) with the
example of a resonator connected to a single waveguide within the frequency
regime in which only one dominant mode propagates in the waveguide. It is a
rich example which connects with the energy theorem, serves as another illus-
tration of perturbation theory, and leads to the definition of the dimensionless
quality factors, in terms of which resonances can be defined irrespective of
whether they are electromagnetic, acoustic, or descriptive of any other reso-
nant phenomenon. Equation (2.179) reduces to a simple impedance relation
of a two-terminal-pair element. One has

V=ZI, (2.181)

where the impedance Z is given by

-iwµ
2-k2)V

V

E
j eTm,j e,, dSI eTn,i ea dS .

(Q - iwE) V

pV J
eT eV dS

2

+E 1

(U - iWE)V
Q

J eT ea dS
2

(2.182)

An equivalent circuit representing the impedance (2.182) is shown in Fig.
2.11.
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Fig. 2.11. Equivalent circuit of cavity with single port of access

Equation (2.182) has an interesting structure. It has poles in the lower half
of the complex w plane, located symmetrically with respect to the imaginary
axis. In the absence of loss, i.e. a = 0, k2 = w2pe, the poles move onto the real
axis. If the impedance Im(Z)/ µ/e = X/ µ/e is plotted against frequency
(Fig. 2.12), it goes from negative infinity to positive infinity, crossing the
abscissa in between. The slope of the function is negative throughout.

2.10.1 The Resonator and the Energy Theorem

The dependence upon frequency of the impedance illustrated in Fig. 2.12 is
a direct consequence of the energy theorem (2.94). Let us write the electric
and magnetic fields at the waveguide reference plane in the form

E = Ve(rT), (2.183)

H = Ih(rT) . (2.184)

Next, we note that the field patterns e(rT) and h(rT) in a metallic waveguide
are frequency-independent. Finally, we assume an excitation with a magnetic-
field amplitude I that is also frequency independent. Then, in (2.94),

i( a1112E xH* +E*x aH I dS"JeT x

(2.185)

and, using the fact that hT = iZ x eT, we find

8X 4w

aw
(2.186)

The derivative of the impedance is proportional to the stored energy, and is
negative. It is this negative definiteness of the derivative that gives rise to
the form of the graph in Fig. 2.12.
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Fig. 2.12. Plot of normalized X, i.e. X =- Vpi/( 7 j f eT e,`,=1 dSI2) versus
k/p1; p2/p1 = 2.5; p1I f eT dSI2 = 2p21 f eT dS12

2.10.2 Perturbation Theory and the Generic Form
of the Impedance Expression

Equation (2.182) was derived for a particular choice of reference plane in the
incoming waveguide. A different choice of reference plane leads, in general,
to a different set of values of w, and of I f eT ev da12. Indeed, these quan-
tities are characteristic of the modes of the closed cavity formed from the
open cavity by placing a magnetic short at the reference plane. Clearly, any
choice of reference plane has to lead to an impedance Z with the correct de-
pendence upon frequency as viewed from the chosen reference plane. Among
the various choices of reference planes, one is particularly convenient and,
therefore, is usually the one taken: the choice which makes all terms in the
two summations in (2.182) negligible in the neighborhood of one particular
resonance frequency except for a single one, say, the one pertaining to the
resonance at the frequency wµ. For such a choice of reference plane, (2.182)
assumes a simple form in the neighborhood of the frequency wµ:

Z ti - 21wµ2)I JeT edSI2 . (2.187)(V
This particularly simple form of the impedance of the resonator in the vicinity
of the resonance frequency wµ can be put into "generic" form by making use
of its physical implications. Let us first assume that the waveguide presents an
open circuit (infinite impedance) to the resonator. This could be accomplished
by placing a perfectly conducting shorting plane a quarter wavelength away
from the reference plane. In this case, the denominator has to vanish. This
leads to an equation for the frequency of resonance of the closed resonator.
We obtain
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k2 = pµ = W2 pf + iw/LU . (2.188)

In general, the loss represented by o will be small if the structure is to act as
a resonator. Thus, the frequency of resonance wµ will be given approximately
by (2.188) with v = 0:

pµ . (2.189)

Here we have been careful to indicate that the material may be dispersive
and thus the dielectric constant and magnetic permeability have to be eval-
uated at the pertinent frequency. Equation (2.189) defines the frequency of
resonance. Now, we introduce the loss and assume that the frequency shifts
to wµ + dw owing to the loss. Introducing this ansatz and the definition of
Wµ, into (2.188), we find, to first order in aw and o,,

2wµ4WpE+WµQW.!/+ W2AWE"W +1WAjLU=0. (2.190)

Solving for Lw, we find

2zAw - -i or
(2.191)

WA, (1/2)wµ [(E + waE/aw) + (E/p) (µ + wN,aµ/aw)]

The frequency is negative imaginary. The field decays owing to the loss. In
fact, (2.191) could have been derived by standard perturbation theory. The
time-averaged power dissipated in the resonator is

2

time-averaged dissipated power = Pd = I VAI U / eµ eµ dV. (2.192)

The energy storage in the resonator is

stored energy = w

IV4I2 KE+wILaw) +Cµ+wuaw/J (2.193)

x f eµ eu dV ,

where we have used (2.154) to express the magnitude of II,1 in terms of IVµI,
with pµ = If the field decays at the rate the energy decays
at twice this rate. The decay of the energy accounts for the dissipated power:

2Im(L\w) _ Pd
w

(2.194)

Combining (2.192), (2.193), and (2.194), we arrive at (2.191). But now the
relation is the consequence of a standard perturbation theory that can be
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applied to resonators of all kinds, acoustic, mechanical, etc. It is in this general
context that one associates a so-called "unloaded" quality factor Q with the
resonance, which is defined by

Wµw =
(112)wl,[(EWµC9E1aw) + Ellt(µ +

Qoµ
WµaµlaW)1

(2.195)=
Pd U

The adjective "unloaded" refers to the fact that the output waveguide has
been closed off and thus does not load the resonator. In terms of this Q factor,
the rate of decay is given directly by

-2Im(zlw) - 1 .

(2.196)
Wµ Qoµ

Next, consider the resonator when it is connected to a matched guide so that
Z = -Zo in (2.187). An initial excitation in the resonator will decay more
rapidly, since energy is lost not only to the conduction process but also to
the power escaping through the output port. Instead of (2.190), we find from
(2.187)

2w LW tie + WAAw -juE + WA 6W L E + iWµµv
19W aw

+iw,,t'YoI J eT eµ dSI2/V = 0 ,

which, solved for Aw, gives

Qw o+YoI
2 _ -i (2.197)

Wµ (1/2)wµ[( + w ae/aw) + (E/,u)(µ + wµaµlaw)]

It is clear that the rate of decay has increased owing to the coupling to the
resonator mode. A power pe escapes from the resonator, contributing to the
rate of decay. Now that the decay is caused by both the dissipated power pd
and the power escaping from the waveguide, we must have

2Im(Lw) _ -Pd - pe
w w

(2.198)

Comparing this expression with (2.197), we find that the power escaping from
the resonator is given by

z

pe = I V2
I2 (yofe

µ. , eµ dV if eT e* dSI /V (2.199)

We may define a Q factor analogous to (2.195) which expresses the rate of
decay due to the escaping power:

W,w (1/2)Wµ[E + waclaw + (E/µ)(i + waµ/aw)] (2.200)Qeµ-
pe Yo)feTeµdSI2/V
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The impedance relation (2.187) can be written in generic form, using the
definitions of Q and the expansion of pµ - k2 to first order in Aw as in
(2.190). One finds the very simple relation

Z _ QoµlQeµ
Zo -1(2/ w/w )Qoµ + 1

(2.201)

This relation involves.Aw/wµ and the Qs. The relation can be made even more
generic by removing the reference to normalized impedance and replacing it
with the reflection coefficient, which has a more general meaning. We have

P Z - Z. 1/Qeµ - 1/Q.µ + i(2L w/wµ)
Z + Zo 1/Qeµ + 1/Qom - i(2dw/wµ)

(2.202)

Suppose that the cavity is excited by an oscillator of adjustable frequency
w, well "padded" by an isolator which ensures that the oscillator emits a
forward-traveling wave a unaffected by the impedance presented to the oscil-
lator by the cavity. The power absorbed by the cavity is

JaI2 - IbI2 = IaI2(1 -
Ir12) 41QepQOIA

(1/Qe,µ + 1/Q0,µ)2 + (taw/w,,)2I
aI2

(2.203)

This expression
unloaded Q:

contains the sum of the inverse external Q and the inverse

1 1 _ 1

Qoµ + Qeµ QLµ
(2.204)

which defines the inverse "loaded" Q. The name stems from the fact that the
loaded Q determines the rate of decay of a resonance at the frequency wN, set
up in the cavity when the source is removed from the cavity and replaced
by a matched load. Equation (2.203) is in a form entirely independent of
an equivalent circuit or of the specific electromagnetic example. A reflection
coefficient, the ratio of the reflected and incident waves, is a general concept
applicable to any system propagating waves. The, Qs were defined in terms
of decay rates for different terminations of the resonator. These rates, again,
need not be specifically associated with electromagnetic fields but could be
acoustic, such as those associated with surface acoustic waves (SAWs), or
purely mechanical.

A measurement of the frequency separation of the half-power points de-
termines the loaded Q (2.204). A measurement of the reflection coefficient at
resonance gives the ratio of the unloaded Q to the external Q. Thus, from
these two measurements the external Q and the unloaded Q of the pth reso-
nance can be determined.
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2.11 Reciprocal Multiports

In the analysis of resonators, we arrived at an impedance matrix description
of a resonator connected to a number of waveguides. The fields inside a per-
fect enclosure were expanded in terms of the modes of a lossless resonator.
The result was an impedance matrix for a resonator containing a conducting
medium described by a conductivity a. Active systems with gain are obtained
when the conductivity is made negative.

The expansion in terms of resonator modes gave the full frequency de-
pendence of the impedance matrix. One need not go to this degree of detail
to obtain some important relations among the elements of the impedance
matrix describing a multiport. If an electromagnetic system has N ports of
access via N single-mode waveguides, or via waveguides with a total number
of N propagating modes, then one may describe the excitation in each of the
waveguides or modes by the amplitudes of the electric and magnetic fields
at reference planes sufficiently far from the structure that the cutoff modes
excited at and near the connection to the system are of negligible ampli-
tude at the reference planes. The electric fields can be expressed in terms of
their mode amplitudes Vj, the magnetic fields in terms of their amplitudes
13, j = 1, 2.... N. By the uniqueness theorem, the excitation is described
fully by the tangential electric field over the part S' of the surface enclosing
the volume of interest, and the tangential magnetic field over the remaining
part S". If the system is in a perfectly conducting enclosure, S = S', then
the tangential electric field vanishes over the perfectly conducting enclosure
S', and the tangential magnetic field is fully described by the amplitudes Ij
of the waveguide modes over the surface S' containing the reference cross
sections. From the knowledge of the magnetic fields across the reference cross
sections, the electric fields can be determined uniquely. This means one must
have a linear relation between the Ij and the Vj:

V.7=Z,klk, (2.205)

where the Zjks are complex coefficients representing the network in terms of
an impedance matrix description. If the network is lossless, then one must
have

J:(VjI + V'Ij) =it zi+ IfZtI = 0. (2.206)

Since the currents can be chosen arbitrarily, one must have

Z + Zt =0. (2.207)

One may determine other constraints on the impedance matrix imposed
by the reciprocity theorem of Sect. 1.8. The reciprocity theorem for a struc-
ture containing media with symmetric dielectric and magnetic permeability
tensors is
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i Ei'i x Hi2> dS = i Ei2i x HM dS. (2.208)

If we now consider two different excitations of the structure, indicated by
superscripts (1) and (2), (2.208) can be written

V.(1)h2) _ V.(2)I(1) (2.209a)
i j

or

It1)ZtI(2) = 1(2)Zt7(1) = It1)ZI(2) (2.209b)

where the subscript "t" indicates transposition of a matrix. Since the excita-
tions are arbitrary, one must have

Zt = Z. (2.210)

The impedance matrix of a structure obeying the reciprocity theorem must
be symmetric. The impedance matrix (2.180) of a resonator with multiple
ports of access obeys the reciprocity theorem if the mode patterns of the
cavity and waveguide are taken to be real. Then the proper phase relation is
established between the E fields and the voltages and between the H fields
and the currents.

2.12 Simple Model of Resonator

The preceding analysis was a formal derivation from Maxwell's equations of
the terminal characteristics of a resonator. At optical frequencies, the phys-
ical conductors (metals) that model adequately the behavior of a perfect
conductor at microwave frequencies are too lossy to provide loss-free enclo-
sures. Instead, open dielectric structures are used for resonators at optical
frequencies. An optical Fabry-Perot resonator may be formed from dielectric
mirrors that capture free-space Hermite Gaussian modes as described in the
next chapter. These share many properties of enclosed structures.

Further, resonators occur in other realizations than perfectly conducting
enclosures. They may be acoustic resonators. There is a generic commonality
to all these that can be brought out using only three principles: (a) energy
conservation, (b) time reversibility, and (c) perturbation theory. In this sec-
tion we use these principles to arrive at the equation of a resonator coupled
to incoming and outgoing waves [31].

Denote the amplitude of a mode in a closed resonator by U(t). It obeys
the following differential equation in time:

dU
(2.211)

dt
= -iwoU

,

where w,, is the resonance frequency. We normalize the amplitude so that
JU(t) I2 is the energy in the mode. When the resonator is opened by connecting
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to it a waveguide, or by making the mirrors partially transmissive in the case
of a Fabry-Perot resonator, the amplitude of the mode must decay at the
rate 1/Te because of the escaping radiation. Equation (2.211) changes into

dU
dt

+ 1/Te)U . (2.212)

The time rate of change of the energy is

dlU12 2
IUI2 . (2.213)

dt Te

In the spirit of Sect. 2.10, we may define an external Q which relates the
rate of decay of the mode due to coupling to a waveguide to the resonance
frequency:

1 = 2
(2.214)

Qe W0Te

Thus far we have studied a resonance and its decay due to escaping radiation
when there is no excitation of the resonator from the waveguide. Next we
study the case of excitation of the resonator by an incident wave. Denote the
amplitude of the incident wave by a. As usual, we normalize a so that its
square is equal to the power. The system is linear, and thus the excitation
through a can be expressed by modifying (2.212):

dU
dt - -(iwo + 1/Te)U + rca , (2.215)

where is is a coupling coefficient. One may ask why we have chosen to express
the coupling in terms of a, rather than its time derivative or integral. This
choice is justified for all systems that have high Q. Indeed, if the Q is high,
only excitations at and near the resonance frequency can produce a response.
If the coupling is due to da/dt, one may replace it by -iwoa to lowest or-
der, and incorporate the factor -iwo into the coupling coefficient. A similar
argument applies to coupling to the integral of a.

We may solve (2.215) for an excitation a proportional to exp(-iwt):

_ rca
U

i(wo - w) + 1 /Te
(2.216)

Now, let us revisit the case of the unexcited resonance as it decays by cou-
pling into the external waveguide. We assume that the incoming waveguide
propagates only one mode. It is clear that the escaping energy excites an
outgoing wave of complex amplitude b whose power is equal to the rate of
decay of the energy:

2dldtl

= -T IUI2 =
-IbI2

. (2.217)
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Next, consider the time-reversed solution. Decay becomes growth, and an
outgoing wave b becomes an incoming wave a (whose amplitude is made to
grow exponentially). The frequency of the excitation is wo+i/Te. We introduce
this frequency into (2.216) and find

IUI2 =
IK12Ia12 (2.218)
(2/Te)2

Since the outgoing wave became an incoming wave, we have, from (2.217),

Ia12 =
2

IUI2. (2.219)

Comparing (2.218) and (2.219), we find for the coupling coefficient

(2.220)

We can set this real by proper choice of the reference plane in the waveguide.
Thus, combining (2.215) and (2.220), the equation of the open resonator
coupled to an input waveguide becomes

W
=-(iwo+1/Te)U+1/ 2a. (2.221)

Finally, consider the relation for the reflected wave b. The system is linear,
and thus we must have

b = c,,,a + c,,,U . (2.222)

Again, we skirt the possibility that the relationship is in terms of derivatives
or integrals by noting that in the narrow frequency interval of interest these
operators can be replaced by multipliers. We already have the results of the
thought experiment for a = 0, the decay of the mode into the waveguide.
Thus we may set a = 0 in (2.222) and use (2.217), with the result

b=c,,,U2U,
Te

and thus

2
Cu= -.

Te

(2.223)

(2.224)

We dispose of a phase factor by noting that the phase of the mode U is arbi-
trary and can be chosen so as to make the coefficient c,,, real. The coefficient
c,, is determined by power conservation. We have from (2.215)

z

IaI2 - (b12 = dldtl = -T IUI2 + T (aU* + a*U)
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or

Ia12 - Ica12Ia12 - Icv,I2RUI2 - (cacuaU* +

2 IUI2 + (aU* +a* U) ,

Te vV Te

(2.225)

for an arbitrary a. Using the value (2.224) for c.,,, we find ca = -1, and thus
the relation between the incident and reflected waves becomes

b =- a+.rTee2U
(2.226)

The equations can be modified to include internal loss by supplementing the
decay rate 1/Te due to the escape of radiation into the coupling waveguide
by a decay rate 1/To due to the internal loss:

-=-(iWo+1/Te+1/T0)U+U-a. (2.227)

Equation (2.226) remains unaffected. Equations (2.226) and (2.227) fully de-
fine the behavior of the resonator in the neighborhood of its resonance fre-
quency. It is this pair of resonator equations that connects classical electro-
magnetic fields to quantum fields. Not surprisingly, it is also the appropriate
quantum description of phononic excitations. If we ask for the reflection co-
efficient r as a function of frequency of excitation, we find

r _ (1/Te) - (/1/To) + i(W Wo)
(2.228)

(1/Te) + (1/To) - i(W Wo)
.

This is the same result as obtained from the formal analysis (2.202), with the
identification of the unloaded Q as

1 = 2
(2.229)

Qo WoTo

and the external Q as that given by (2.214). The analysis can be generalized
to multiple resonances in one cavity with one input. An equation of the form
of (2.227) is written for each resonance:

dU;
dt = -i(W0,j - i/Te,7 - i/T0,j)Uj + 2/Te,7a . (2.230)

The coupling between the forward and backward waves is generalized to

(2.231)



88 2. Waveguides and Resonators

The reflection coefficient can be written as

1-+ = b = Ca + 2/Te,9

a 11-r"j + 1/To,j - i(W - W.,7)
(2.232)

The reflection coefficient in the absence of loss, i.e. for 1/ro,j = 0, must be of
unity magnitude. This gives a relation for the coefficient ca.

2.13 Coupling Between Two Resonators

The preceding section developed the equations for the excitation of a res-
onator from an input waveguide using the constraints of time reversal and
energy conservation. It also established the formalism necessary to develop
the equations for a transmission resonator, a task left for one of the problems.

(1) (2)

n

I

Fig. 2.13. Two resonators coupled by a hole

When two resonators are coupled by a hole, such as the two resonators
shown in Fig. 2.13, the formalism is slightly different, and in some ways
simpler than in the preceding section. For the purpose of the analysis we
assume that the two resonators are lossless, their resonance frequencies are
real. Loss can be taken into account by choosing complex frequencies, as
has already been done in Sect. 2.12. The derivation of the equations for the
modes of the two resonators requires only energy conservation considerations.
It is clear that the evolution of the mode in resonator (1) is affected by
resonator (2). If the coupling is weak, one may supplement the equation for
the uncoupled resonator (1) by a coupling term proportional to the excitation
in resonator (2):

dUj-
dt= _iW1U1 + r'12U2 (2.233)

In a similar way one may describe the excitation of resonator (2):
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dU2
= -iw2 U 2 + ,c21 U1 . (2.234)

dt

These are the coupled-mode equations of the two resonator modes. The cou-
pling coefficients depend on the geometry of the coupling hole. Energy con-
servation imposes a constraint. Indeed, from energy conservation we have

dIUiI2 di U212 _
dt + dt

(2.235)

= ,c12U2Ui + /-21U1U2 + IC1zU2 U1 + U2 .

Since the amplitudes U1 and U2 can be chosen arbitrarily, one must require

K12 = -rl21 = K . (2.236)

If we assume a time dependence exp(-iwt) for the amplitudes U1 and U2
and use (2.233), (2.234), and (2.236), we obtain the determinantal equation
for the frequency

(w-wl)(w-w2) - IK12 =0,

with the solution

ll
1

_
2w2

2
w=w12w2

w 1 +K2.A

2.5

2.0

t 1.5

0.5

0.5 1.0 1.5 2.0 2.5

01

(2.237)

(2.238)

0)0

Fig. 2.14. The solutions to the determinantal equation (2.237); jr.1 = 0.1
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Note that the frequencies of the coupled system depend only upon the
magnitude of the coupling coefficient, not its phase. One can imagine a situ-
ation in which one of the cavities, say cavity (1), is tuned by a plunger and
its frequency is varied, while the second cavity remains unchanged. Then one
may construct a diagram, as shown in Fig. 2.14, for the frequency w of the
coupled system as a function of w1, with w2 fixed. The greatest deviation
from the natural frequencies of the two resonators occurs in the case of de-
generacy, wl = w2, where we find that the two frequencies of the coupled
system are separated by 21KI. The solutions for the amplitudes Ul and U2 in
the degenerate case are

Ui = [A+e-'I"lt + A_e+'IrHtI a-'wot , (2.239)

U2 = i I I (A+e-'Ir'It - A_e'IkIt)e_k 0t , (2.240)

where wo = Wi = W2.
From the nature of the solutions one may draw conclusions as to the phase

of the coupling coefficient in some specific cases. Take for example the case of
two identical resonators coupled by a hole between them in a structure with
a symmetry plane containing the hole. The mode solutions must be either
symmetric or antisymmetric. From (2.240) we conclude that the coupling
coefficient must be pure imaginary.

For a better understanding of the coupled-mode formalism it is helpful
to look at the analysis of the electromagnetic fields, as was done in Sect. 2.9
for the impedance matrix of the open resonator. We start with the example
in Fig. 2.13 and define the modes in the uncoupled resonators by placing a
perfect magnetic short across the hole. Now that the coupling is removed,
the tangential magnetic fields vanish across the hole. We denote the electric-
and magnetic-field patterns of the uncoupled modes of resonance frequencies
wl and w2 by el(r),e2(r),hl(r), and h2(r). The magnetic fields of the un-
coupled modes have zero tangential components at the hole. When the hole
is opened, mode (2) causes a nonzero tangential magnetic field to appear in
resonator (1). Denote this field by I2h2P)(r). It is clearly proportional to the
amplitude of the magnetic-field pattern in resonator (2). As in the treatment
of the open cavity, the appearance of this field in resonator (1) is represented
by a surface current

Ke = -n x H = -12n x h2pi(r) (2.241)

inside the closed resonator (1), over the surface of the hole. This case has
been treated in Sect. 2.8, and the resulting equations for the amplitudes of
the electric and magnetic fields are

Ed tl = pill - 2 f n ei x h2PidS , (2.242)
V ole
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dl
p

dt = -p1 V1 with pi = wl poEo (2.243)

In a similar way we may write down equations for the perturbed mode of
resonator (2). Next we introduce the canonical amplitudes U1 and U2, which,
in the absence of coupling, reduce the second-order differential equation of
each resonator to uncoupled first-order differential equations. Note that U1
and U2 have the unperturbed time dependences exp(-iwit) and exp(-iw2t).
The transformations are

Uj oc V'fVj + iv/,-uIj; j = 1, 2 . (2.244)

When (2.242) and (2.243) are put into canonical form and only the term with
positive frequency is retained in the coupling term, since the excitation by the
coupling term with negative frequency is off-resonance and can be neglected,
we find

dU1
= _iw1U1 + i U2 J n ei x h2PidS . (2.245)

dt v pE hole

Comparison with (2.233) shows that the coupling coefficient is

nxhdS.X12= i
fholeV

n ex hdS .X21 = - i
fholeV

(2.247)

Note that the coupling coefficients are imaginary when e2, el, h(p), and h(P)
are real, as pointed out earlier on the basis of symmetry of the mode solutions.
Energy conservation requires, according to (2.236),

J
n ei x h2PidS = - (1hole n e2 x h(')dS I * . (2.248)

hole ///

This is a constraint on the perturbation fields. For symmetric resonators, this
constraint is automatically satisfied. However, the interesting fact is that it
holds for asymmetric resonators as well.

2.14 Summary

This chapter was a brief introduction to the theory of modes in microwave
waveguides and resonators. The emphasis was on modes and mode expan-
sions. In microwave design it is common to use coaxial cables or waveguides
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within the frequency regime within which only the TEM mode or the dom-
inant waveguide mode, respectively, propagates, while all other modes are
below their cutoff frequency. The response of the system simplifies to that of
one represented by simple equivalent circuits.

We derived the dispersion relations and considered energy and power.
These concepts are fundamental to the analysis of thermal noise and quan-
tum noise, since energy considerations are the basis of statistical physics and
thermodynamics.

The analysis of waveguides and resonators included the presence of media
in the enclosure. The media could be dispersive and lossy. They could also
be made active if the conductivity v was made negative. Thus, the analysis
includes the description of active devices such as amplifiers and lasers, as
discussed in connection with noise performance in Chap. 5 and subsequent
chapters. The structures could be equipped with many input waveguides and
thus are electromagnetic models of multiports.

The exact analysis of waveguides and resonators filled with a uniform
medium was helpful in gaining an understanding of perturbation methods,
which, on one hand, gave the attenuation constant of a waveguide mode
due to loss and, on the other hand, derived the equations of a resonator
at and near one of its resonance frequencies using power conservation and
time reversibility. These perturbation approaches are particularly useful and
accurate in optical structures, because in such structures the losses per wave-
length, or per cycle, have to be small if the structures are to be of any practical
use.

Problems

2.1 Monolithic microwave integrated circuits (MMICs) contain transmis-
sion line structures with piecewise uniform dielectric media as shown in Fig.
P2.1.1. The purpose of this problem is to show that such structures cannot
support TEM waves.

Co metal

metal

Fig. P2.1.1. A transmission line in an MMIC

(a) Prove that the electric field obeys the following differential equation in a
(piecewise) uniform dielectric medium:

V2E + w2a0eE = 0 . (1)
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(b) In an axially uniform structure solutions exist that have the z dependence
e'O'. Then (1) reduces to

oTE + (w2µoe _,32 )E = 0. (2)

A TEM wave has no longitudinal component of E and H. Thus E and
H are purely transverse. E = ET, H = HT.

(c) Prove that VT x ET = 0. Therefore ET = -VTO(x, y)e'QZ.
(d) Show that the divergence relation in a piecewise uniform dielectric re-

duces to

VT0 = 0 . (3)

(e) Prove that a conductor pair in a piecewise uniform dielectric system
cannot support a TEM wave, unless e is constant throughout all of space.

2.2* In a square waveguide, the modes E,,,,n are degenerate with the modes
Enm,, and the modes Hnm with the modes Hmn.

(a) Show that the Hmn mode with

mir n7r
mn = - Cos a x Cos b y

is orthogonal to the mode with

(1)

P n m = C O S x Cos
n27r

b
y , (2)

for m n, even when b = a.
(b) Consider the mode Wlo. Construct the new function W10 + x'01. Sketch

the HT field and ET field of the mode.
(c) Find another linear combination giving a mode that is orthogonal to that

of part (b). Sketch the HT field and ET field.

2.3 Find the power radiated in one direction by a short wire at the center
of a rectangular waveguide of dimensions a, b, i.e. the extension of the center
conductor of a "feeder" coaxial cable (see Fig. 2.8). The waveguide is shorted
at a distance Ag/4, where )y = 27r/,3, and

K=iylosinsnkPy)Sx-2l fory<Q,

K=0 fory>f.
2.4* A resistive sheet of 1000 Q square (i.e. a times the thickness 0 is 10-3 S;
S stands for siemens or mho) is to be used in an attenuator. For an attenuation
of 10 dB, evaluate the length of the sheet required at 10 GHz (see Fig. P2.4.1).
Use a perturbation approach. Compute the loss from

2
f aIE12dV over the

volume of the sheet using the unperturbed field.
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T
b=1 cm

a= 2.3 cm

Fig. P2.4.1. An attenuator

2.5

(a) Write down the potential functions for all modes E,,,,np and H,,,,,p of a
rectangular cavity resonator (see Fig. P2.5.1).

(b) If b < a < f, which mode has the lowest resonance frequency?
(c) Describe the E and H field patterns of this mode in the x, y plane at

z=0andz=f/2.

Fig. P2.5.1. A rectangular cavity

2.6* A waveguide partially filled with an anisotropic medium does not sup-
port TE or TM waves. However, if the medium does not change along the
waveguide axis, the z axis, the waveguide possesses translational symmetry
and propagates waves with the dependence exp(i,(3z).

Show that energy velocity for such modes is still equal to dw/d,6.

2.7 A cavity at resonance presents a reflection coefficient Tres = +0.33. The
frequencies at which the power absorbed by the cavity is half of that at
resonance lie 10 MHz apart. The resonant frequency of the cavity is 5000
MHz. Find the unloaded Q and the external Q. Neglect the losses far off
resonance.

2.8* Generalize equations (2.227) and (2.226) to a resonator with two inputs.
You can shut off one port at a time, reducing the resonator to a one-port,
and obtain the parameters of the two-port in this way. You should permit
two, in general different, decay rates Tel and Tee for the two ports.

Derive the power transmitted through the resonator for an incident wave
al = A exp -iwt as a function of frequency. When is the power transmission
through the resonator 100%?
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2.9 A lossless "Y", as shown in Fig. P2.9.1, is a three-port. The three-port
can be matched from port (1) by slow tapering. Show that if it is matched
as seen from port (1), it cannot appear matched as seen from ports (2) and
(3). Find the scattering matrix.

(2)

(1)

(3)

Fig. P2.9.1. A tapered "Y"

2.10 Consider a lossless propagation system formed from a multimode
waveguide that transforms incident waves a into transmitted waves b via
the transfer matrix T.

(a) Prove that TtT = TTt = 1.
(b) Consider excitations at w and w + Aw, with a(w +,Aw) = a(w). Using

the energy theorem, show that

Ttz =iW,
where W is a positive definite Hermitian matrix.

Solutions

2.2

(a) The product of the potential functions can be written as

WmnWnm = cos C a x) cos ax) cos C a y)
cos C na y)

= 4 Lcos
((m_n)lr

a x) +cos
Cm

a
n)x/J

(1)

xlcos((m-n),7r ) Cm+n)
)JJ

\
a

y +cos y
a

The integrals with respect to x and y extend over an interval a. They
vanish because of the periodicity of the functions.

(b) Figure S2.2.1a shows the potential surface. The lines of equal height are
the E lines, the lines of steepest descent are the H lines.

(c) Figure S2.2.1b shows the potential surface for the orthogonal mode, W10-
To1.
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Fig. S2.2.1. (a) Plot ofWlo + Woi; (b) plot ofWlo -'yol

2.4 For an E field of complex amplitude Eo in the center of the guide, the
power dissipated per unit length is

Pd = 20,0IEoI2b
. (1)

The power flow in the waveguide is

P. = 1
4

- pz
IEo12ab .1

W /loco
(2)

The power decays with an attenuation constant y, which is given by

_Pd_2v8 /l0 1

Po a V Eo 1 - P2/w2/loco
(3)

The net attenuation over a length L is exp('yL). We find ry = 0.432 cm-1 and
L = 5.33 cm.

2.6 By superimposing two modes of differentially different frequencies w and
w +,Aw with equal amplitudes, one may construct a wavepacket whose fields
go to zero at distances spaced by (27r/zAw)dw/d/3. The energy stored in this
packet cannot escape and the packet travels at the group velocity. Thus the
argument that the energy travels at the group velocity is a very general
argument and only breaks down when the propagation constant cannot be
differentiated with respect to frequency.

2.8 If there are two ports of access, each port causes a decay of the mode,
and each port feeds the mode. The generalization of (2.227) is

dU _(iwo+1/To+1/Tel+1/Te2)U+1/? a1+1/?a2.
dt

VV( Tel

V2

Te2
(1)

There are two reflected waves, each of which can be evaluated from time
reversal and energy conservation
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bi=-as+1U; i=1,2.
Te2

(2)

When al = A exp(-iwt) and a2 = 0 we find from the above, for the power
escaping from port (2)

b2 I2 = 21 U12
__ 41A I2T2/Te1Te2

Te2 (w - wo)2T2 + 1

where

1 1 1 1

T Tel Te2 To

(3)

(4)

All of the power is transferred if, and only if 11To = 0 and 1/Tel = 1/-r,2-
The resonator must be loss-free and the two external Qs must be the same.





3. Diffraction, Dielectric Waveguides,
Optical Fibers, and the Kerr Effect

Physical conductors (metals) that model adequately the behavior of a per-
fect conductor at microwave frequencies are too lossy at optical frequencies to
provide low-loss enclosures. The same holds for reflectors. Whereas a metallic
reflector is perfectly adequate at microwave frequencies, at optical frequen-
cies reflectors have to be constructed using layered dielectrics of the proper
thickness and dielectric constant. Total internal reflection is utilized in the
construction of dielectric waveguides at microwave frequencies as well as at
optical frequencies. At optical frequencies these dielectric waveguides are real-
ized as fibers. Optical beams can also be contained in free space, if periodically
refocused by lenses or mirrors. Optical resonators can be built with two or
more curved mirrors that balance the diffraction of the beam bouncing back
and forth and maintain a resonance mode in the space between the mirrors.
The modes in dielectric waveguides and the modes of optical resonators share
many of the properties of microwave waveguides and resonators discussed in
the preceding chapter.

We start with a discussion of optical beams propagating in free space,
the so-called Gaussian and Hermite Gaussian beams. We discuss the modes
in optical fibers and derive their dispersion relations, i.e. the propagation
constants as functions of frequency. We present both the standard derivation
in terms of coupled TE and TM waves and the simplified linearly polarized
(LP) approach. This is followed by the derivation of the perturbation formula
for the change of the propagation constant due to an index change of the
fiber. We study the propagation of waves in the presence of group velocity
dispersion. We look at the coupling of two waves of orthogonal polarization
in an optical fiber.

The detailed study of wave propagation in fibers is preliminary to the
study of optical-fiber communications in Chaps. 9 and 10. High-bit-rate op-
tical communications have made enormous progress in recent years. The low
loss and low dispersion of optical fibers make the fiber an ideal transmission
medium, permitting much higher bit rates than is possible with microwave
transmission. Recently, designs for repeaterless transoceanic fiber cables have
been implemented with a bit rate of 5 Gbit/s. The loss of the fiber is com-
pensated by erbium-doped fiber amplifiers spaced roughly 40 km apart; the
transmission wavelength is at the gain wavelength of erbium, 1.54 µm. These
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technical advances in transoceanic transmission will influence the usage of
terrestrial fibers, 10 million km of which are already in the ground. Ter-
restrial fibers have been designed to have zero group velocity dispersion at
1.3 pm. It was anticipated that all communication over the fibers would be
accomplished at a wavelength of 1.3 µm, using laser diode amplifiers, even
though the minimum loss of the fiber is at around 1.5 pm [32] (see Fig. 3.1).
With zero dispersion, the pulses propagate with no distortion, except for the
effects of third-order dispersion. It has turned out, however, that the erbium
doped fiber amplifiers perform much better than the diode amplifiers. They
have long gain relaxation times of the order of 1 ms and thus have no inter-
symbol crosstalk. Thus, it is likely, that most of the terrestrial network will
also be ugraded to operate at 1.54 ,um wavelength.

10.0

E

0.1

1000

Typical range

1200 1400

Wavelength (nm)

1600

Fig. 3.1. The loss of a single-mode fiber as a function of wavelength (from [32])

3.1 Free-Space Propagation and Diffraction

In preparation for the study of optical-beam propagation, we solve Maxwell's
equations in the paraxial limit, in the limit when all wave vectors composing
the beam have small angles of inclination with respect to the axis of the
beam. By solving for the vector potential along an axis transverse to the
beam axis, a scalar equation is obtained. All three components of the electric
and magnetic fields can be derived from the solution of this scalar equation.
Optical Fabry-Perot resonator fields can be constructed from these same
solutions.

Propagation of optical beams is in everyone's daily experience. Sun rays
passing through clouds delineate straight line designs in the sky. Thus, the
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dominant impression is that light propagates as rays, the foundation of the
mathematical theory of ray optics. However, observation of light diffracted by
a sharp edge or small holes (such as the weave of a parasol) is also a common
experience, and these effects call for a refinement of ray optics by diffraction
theory.

Maxwell's equations contain both ray optics and diffraction optics in cer-
tain limits. In diffraction optics, waves of different propagation vectors in-
terfere with each other to produce collectively a beam. These beams do not
maintain their cross section, they diffract. However, the diffraction may be
small if the transverse dimension of the beam is many wavelengths. Since
metals are too lossy at optical frequencies to provide efficient guidance of
optical waves, as they do for microwaves, free-space beams are a convenient
way to transmit power from one region of space to the other. The diffraction
solutions of Maxwell's equations also provide the framework for the quanti-
zation of electromagnetic fields in free space. These are the reasons for the
study of diffraction here.

Maxwell's equations are repeated here, as specialized to free space:

anEV lF d ' 3 1x =-µ0 t- ( ara ay s aw), ( . )

OE
V H )A e ' l 3 2x = E0 aw ,( mp re s ( . )

V E0E = 0 (Gauss's law) , (3.3)

V µ0H = 0 (Gauss's law) . (3.4)

From these equations one may derive the wave equation for the electric field

,72E a2E
(3.5)= Eo/lo at2

or an analogous relation for the magnetic field. We are interested in solutions
that are plane-wave-like, but confined to a finite cross section that measures
many wavelengths across. Under these conditions, one may make the paraxial
wave approximation. It is more convenient to make this approximation in the
wave equation for the vector potential than in the equation for the electric
field, since then one may deal with a single-component vector field and a
scalar wave equation, as we proceed to show [31].

The curl of the vector potential is defined by

µ0H=VxA. (3.6)

In order to define a vector field completely, one needs to specify both its
curl and its divergence. Equation (3.6) defines only the curl, in terms of the
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H field. One may use this freedom to choose the divergence of the vector
potential so as to obtain simple equations for the evolution of the vector
potential. This is done by first noting that (3.1) and (3.6) give

where 0 is an as yet unspecified scalar potential. Introducing (3.6) and (3.7)
into (3.2), one finds

2
vx(vXA)=-,ieoW2 - ILofoatvP. (3.8)

Using a well-known vector identitity, the curl of the curl of A can be written

Vx(VxA)=VV.A-v2A. (3.9)

Thus, if one chooses the so-called Lorentz gauge,

V.A+µoEo-_ =0, (3.10)

a simple wave equation is obtained for the vector potential:

a2AV2 A 0 3 11.- µoEo
5t2

= ( . )

Gauss's law (3.3), in combination with (3.7), gives

v. (+v) =0. (3.12)

When this relation is combined with the Lorentz gauge (3.10) one obtains
the wave equation for the scalar potential 0:

a2 !p
v20 - tLoEo ate = 0. (3.13)

Next we apply the wave equation obeyed by the vector potential, (3.11),
to propagation of a beam in free space along the z direction of a Cartesian
coordinate system. We assume a vector potential with a single component
along the x axis. Substituting this ansatz into (3.11), we obtain a scalar wave
equation for Ax:

2

v2Ax = Eopo x (3.14)2

We now look for a solution of Ax in the form of a quasi-plane wave, i.e. we
assume
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A. = '1(x, y, z)e-iwteikz (3.15)

and obtain the differential equation for the field envelope Vi:

a2,
+ a20 + 2ika- + a2- = 0 (3.16)

ax2 ay2 az az2 ,

where k is defined by k = w µoeo, which is the dispersion relation of plane
waves in vacuum. From the Lorentz gauge (3.10), one then obtains for the
scalar potential 45 the following expression:

= - i a-
exp(-iwt + ikz) ,

Eoµow ax

which manifestly satisfies the scalar wave equation (3.13).
If the beam has a cross section much larger than a wavelength, the

z dependence of b is approximately given by eikz, and thus the correction
to the z dependence, do/dz, is relatively small. The second derivative of 0
with respect to z can be ignored, with the result

av) 2

axe
+ 19y2

+ 2ik az = 0. (3.17)

This is the paraxial wave equation. This equation also happens to be the
Schrodinger equation of a free particle in two dimensions, if z is replaced by
t. Equation (3.17) is of first order in z and thus describes waves that travel in
the +z direction only. A corresponding equation with k replaced by -k gives
waves traveling in the -z direction. The simplest solution of the paraxial
wave equation is a beam of Gaussian cross section

(x, y, z) =Ao
-ib

exp
ik(x2 + y2)

z-ib 2(z - ib)
, (3.18)

where A,, and b are integration constants. The former is the amplitude at
the beam center, x = y = 0, at z = 0; the latter is the so-called confocal
parameter. This parameter determines the minimum diameter of the beam. In
order to see this, we rewrite (3.18) by separating the real part and imaginary
part of the exponent in the form

2 z

V) (X, y, z) = 1 Az2/b2 exp C -
x2

w2y
2/

exp Cik(x2R y ))exp(-io)
.

(3.19)

Here the meaning of the parameters is easily identifiable: w is the radius at
which the field amplitude is decreased from its peak value by 1/e; R is the
radius of curvature of the phase front surface defined by k[(x2+y2)/2R]+kz =
0; 0 is a phase advance. All these parameters are related to the confocal
parameter b. Indeed,
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/ 2
1

w2 = I 1 + b2 I ' R z2 + b2 '
and tan-1 z . (3.20)

The minimum beam diameter is

2b Ab
wo=

k
= (3.21)

where A = 27r/k is the free-space wavelength. Equation (3.19) can also be
written

2 2 2

l'(x,y,z) = w/wo exp - x w2y

/ exp (ik(x2R
y2)

) exp(-it) . (3.19a)

The denominator w/wo takes care of power conservation: the power flow
density has to decrease with the square of the beam radius. The phase advance
0 imparts to the beam a phase velocity larger than the speed of light. This
is due to the the fact that the Gaussian beam is made up of a superposition
of plane waves whose wave-vectors are inclined with respect to the z axis,
and thus possess phase velocities as measured along the z axis that are larger
than the speed of light. The group velocity is, of course, less than the speed
of light (see Appendix A.1). One may say that vacuum is dispersive for a
beam of any given beam radius wo.

Fig. 3.2. Electric field of Gaussian beam in x-z plane at one instant of time. The
pattern moves to the right as a function of time; b/A = 10/6

Figure 3.2 shows the electric field in the x-z plane of the fundamental
Gaussian for a wave traveling in the +z direction. The field has both z and
x components, which are evaluated from (3.7) using the vector potential
solution and the scalar potential associated with it according to (3.10). The
electric field is found to be
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E = iw (i.,V) + 2ik
iz

a
exp(-iwt + ikz) . (3.22)

W PoEo ax JJJ

The derivation from the vector potential has paid off. We have found the
total electric field from one single vector component of the vector potential.
Had we set up the paraxial wave equation for the electric field, we would have
had to solve three scalar wave equations separately and would have had to
make the three solutions consistent with each other by setting the divergence
of E equal to zero.

Fabry-Perot resonators support Gaussian beams when formed from curved,
spherical mirrors spaced at the appropriate distance so as to match the phase
curvature of the Gaussian. The nodal surfaces of the modes fit the mir-
ror surfaces, which may be thought to function as perfect conductors. One
uses dielectric mirrors with periodic layers of dielectrics of different dielectric
constant to construct highly reflecting surfaces at optical frequencies. These
Fabry-Perot resonators are the laser resonators for gas and many solid-state
lasers, in which the medium cannot provide guidance of the optical wave.

In many cases it is possible to ignore the refractive properties of the
medium and compute the electric field solely from the vacuum field. The
laser medium supplies only the gain that balances the losses in the medium
and the loss due to radiation passing through the partially transmitting end
mirror used as the laser output mirror. The emitted laser beam outside the
resonator does not experience vacuum dispersion, as we now discuss. We have
pointed out that a Gaussian mode is supported between two curved mirrors of
some given radius R. If we look at a symmetric resonator, with both mirrors
of the same curvature R, spaced a distance d apart, then (3.20) yields a value
for the b parameter

b = Rd/2 - (d/2)2. (3.23)

The b parameter is fixed by the geometry; it is wavelength-independent.
Hence, if many axial Gaussian modes of different frequencies are excited si-
multaneously within the laser by mode-locking the laser [31,331, a short pulse
is produced within the laser. The different frequency components of the pulse
all have the same b parameter, which means that they have different beam
radii. If a group velocity is computed from the phase shift of the pulse in
one pass, 2kd + 2 tan-1(d/2b), one finds that it is equal to the speed of light
c. The additional phase shift 20 does not contribute to the group velocity
since it is frequency independent. A pulse of this type emitted from the laser
(if one of the mirrors is partially transmissive) does not experience "vacuum
dispersion".

The paraxial wave equation has a complete set of solutions that are com-
posed of products of Hermite Gaussians:

(_ z\

Pm Hm exp -Z I . (3.24)
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The solutions are

"I' w o [_(X21JC

l'Ymn(X, y, z) =
W

Wm (
\ W
YL

)Wn
(
\ ,w

VLy

/I eXp + y2)J (3.25)

x exp[-i(m + n + 1)0] ,

with w, R and 0 given by (3.20). They have the same phase profile as the
fundamental Gaussian, but different phase velocities. The fields experience
a greater phase advance per unit distance of propagation the greater the
order of the Hermite Gaussian. The reason for this is that the higher the
order of the mode, the greater the inclination with respect to the z axis of
the plane waves composing the mode. Thus, the higher order modes acquire
phase velocities larger than the speed of light.

The Hermite Gaussians form a complete orthogonal set. The orthogonality
could be proved by mathematical manipulation. However, there is a simple
physical argument for the orthogonality. The power flow in the beam is formed
from the integrals of complex-conjugate products of field profiles. A product
of two mode patterns of different propagation constants has a z dependence.
Since the time-averaged power flow must be z independent, such cross terms
must be equal to zero.

An excitation described by a transverse electric-field distribution can be
expanded in terms of this set. The radius w of the Hermite Gaussians is ar-
bitrary, but should be chosen so that the number of terms in the expansion
with appreciable amplitudes is minimized. For simple profiles of the excita-
tion, the rule is to maximize the excitation of the fundamental Gaussian mode
by proper choice of w. Some important relations among Hermite Gaussians
are summarized in Appendix A.2.

3.2 Modes in a Cylindrical Piecewise Uniform Dielectric

A dielectric rod can guide microwaves. A rod of refractive index higher than
that of the surrounding space confines the field in the rod and in its immediate
vicinity. The eigenmode solutions for a dielectric rod are the same as those
for an optical fiber of uniform core index. A fiber has a dielectric core of
slightly higher index than that of the surrounding cladding. In ray optics
parlance, optical radiation can be confined to the core and its periphery
by total internal reflection if the rays constituting the mode have incidence
angles greater than the critical angle. Figure 3.3 shows schematically a ray
bouncing around in a dielectric cylinder with a step discontinuity in the
index [34].

In terms of Maxwell's equations, guided modes appear as eigensolutions of
the wave equation that decay exponentially towards infinity in the transverse
plane. This analytic approach yields mode profiles and dispersion relations
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na> nb

Fig. 3.3. Path of ray in single mode circular cylindrical step-index fiber

for the modes. We shall follow it here, using some of the results from [35].
The vector field E(r, t) is assumed to be sinusoidally time-dependent (any
general time-dependence can be built up by Fourier superposition):

E(r, t) = Re[E(r) exp(-iwt)] (3.26)

From Maxwell's equations,

VxE=iwp0H, (3.27)

V x H = -iwfE, (3.28)

(3.29)

V.p0H=0, (3.30)

one may derive the wave equation for the electric field if the dielectric is
uniform. In a piecewise uniform dielectric this condition is obeyed separately
in each region with a uniform medium:

V2E(r) +w2poeE(r) = 0 . (3.31)

Similarly, a wave equation (or Helmholtz equation) can be derived for the
magnetic field. If we consider a cylindrical waveguide of radius p = a with
index na, and an index nb outside that radius (see Fig. 3.4), one may find
solutions of (3.31) for the z component of the electric field. This equation,
written in cylindrical coordinates, is

E. = A(w)F(p)eimIei0z ,

in which the equation for F becomes

2F 2 _m 2

IF=0
dp2 p dp C p2 /

(3.32)

(3.33)
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core index na

Fig. 3.4. Geometry of fiber with index step

with

IG2 = n2 k2 -)32
a

where k = w µoeo. The solutions for F are

F= Jm(Kp) p < a
Km(ip), p>a

with

2 = 02 - n2k2.

(3.34)

(3.35)

(3.36)

The are Bessel functions of order m and the are modified Bessel
functions of order m. The modified Bessel functions K,,,, decay exponentially
as p -+ oo and are singular at the origin, but because they are not used
to express the field at the origin the singularity does not occur in the field
solution. The specific p-q dependence of the z component of the electric field
has associated with it a definite H field which is purely transverse. There is
also an associated E field, which appears curl-free in the transverse plane,
because H. = 0. The solution thus obtained is a so called E wave. If the core
were enclosed in a perfect conductor, the E wave could be made to satisfy
all the boundary conditions. In an open structure, however, it is not possible
to provide continuity of the tangential components of E and H at p = a,
using only an E wave with two adjustable constants. Instead it is necessary
to develop an analogous H wave solution of the same kind, with the same
radial and ¢ dependence. The boundary conditions can be matched using a
mixture of E and H waves. We do not present the details here, but refer the
reader to the literature [35-37). We simply state the determinantal equation
that results from matching of the boundary conditions:
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(na) + K,,, (1'a) l (J;,,(ra) + nb KK,,,(ya)
(r. a) yKm(ya)/ % r, Jm(na) na yKm(ya)

(3.37)
m/3k(na - nb)

2

a!2y2na

with

2 + y2 = (n2 -a (3.38)

This is a rather complicated-looking determinantal equation. It is clear
that it is the result of two-wave coupling, the two factors in parentheses
representing some forms of limiting solutions in the limit nb na. Of course,
in this limit, no bound solution could in fact exist. Yet, the factors suggest
that there may exist simpler, approximate determinantal equations related
to either one of these factors. We shall show that this is indeed the case after
some more discussion of the meaning of the determinantal equation.

As mentioned earlier, the modes along a fiber are mixtures of E waves
and H waves, and hence it seems appropriate that they have been dubbed
HE,,,,n and EH,,,,, modes. At any specific frequency only a finite number of
these modes is guided. Below a certain frequency, the cutoff frequency of the
first higher-order mode, only one mode propagates, the HE,, mode. This is
the dominant mode used in single-mode fiber propagation. It is, therefore,
the most important mode and deserves further scrutiny. We shall derive its
properties by the much simpler, approximate method of the next section.

3.3 Approximate Approach

The determinantal equation (3.37) is complicated because it expresses the
interaction of E waves with H waves, coupled by the index discontinuity.
One cannot arrive at normalized graphs that are independent of the ratio
na/nb, something possible with approximate analyses. If the index discon-
tinuity is small, the coupling between E and H waves is weak, and either
one or the other wave predominates. This is the reason that approximate ap-
proaches, which deal essentially with one type of wave, produce satisfactory
answers. They arrive at graphs that are normalizable and universal (they do
not depend on na/nb) and give simple dispersion relations.

One of the approximate analyses is the approach that arrives at linearly
polarized (LP) waves [38] by solving the wave equation for, say, an x directed
field. It gives a scalar wave equation of the same type as the one solved for
the z component of the electric field in the exact analysis. The electric field
is exactly matched at the boundary, while the magnetic field is allowed to be
slightly discontinuous.
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The determinantal equation is

IcJm+l(KP) _ 'YKm+1('p) (3.39)
J. ('cP) K. ('YP)

The graphs are universal, they do not depend on the ratio na,/nb. The lowest-
order, dominant mode is the one with the slowest transverse variation, with
m = 0. The determinantal equation is

rcJJ(ip) _ 'YK,('YP)
Jo(ip) Ko(' p)

(3.40)

where we have used the Bessel function recursion relation given in Appendix
A.3.

HE,, Electric Field Vectors

ne = 1.5, nb = 1.485, a = 5µm, wavelength = 1.3 µm

Fig. 3.5. The E field of dominant mode (courtesy of Sai-Tac Chu of Waterloo
University). The lengths of the arrows indicate the magnitude of the electric field

The transverse field is illustrated in Fig. 3.5. In fact, the figure was ob-
tained using the exact solution, but to the eye the difference is not noticeable.
The fact that the dominant mode is identified with m = 0 in this approximate
solution and with m = 1 in the exact approach is, at first, rather puzzling. In
the exact analysis, Bessel functions of order m = 1 express the z component
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Fig. 3.6. Dispersion in normalized units for the propagation constant b and fre-
quency V obtained from LP analysis (from [38])

of the field. The divergence relation connects the derivatives of the transverse
field to i,3E, and hence the transverse E field involves integrals of E. The
integrals lead from J1 to J0, and K1 to K0.

The determination of the field is only one of the steps in the charac-
terization of a fiber mode. Another important piece of information is the
dispersion relation ,3 = /3(w). Figure 3.6 shows the normalized propagation
constant with na and nb considered frequency-independent. The figure uses
the normalized frequency

V = (rn2 - nb2)112ka (3.41)

and the normalized propagation constant

b = (/3/k - nb)/(na - nb). (3.42)

At low frequencies, the mode extends far into the cladding and acquires a
propagation constant characteristic of a plane wave in a medium of index
nb. At very high frequencies, the mode is very effectively reflected at the
boundary between the two media and is essentially confined to the medium of
index na. This explains the asymptotic behavior of the propagation constant
for low and high frequencies. Note that a dispersion curve with zero group
velocity dispersion (GVD) would be a horizontal, straight line in this graph,
because V is proportional to k, and b is independent of k over the frequency
range of zero GVD. Since the propagation constant is not a linear function of
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frequency, the inverse group velocity /3' is a function of frequency. The system
has GVD. Clearly, the geometry of the fiber imposes GVD. In practice, the
situation is complicated by the fact that the index of silica is itself a function
of frequency. It rises toward short wavelengths as the frequency gets closer
to absorption bands in the ultraviolet. This greatly modifies the dispersion
curve, the propagation constant as a function of frequency.

32

Sc

a-
16

-32
1.1 1.2

Oc

1.3 1.4 1.5 1.6 1.7 1.8
WAVELENGTH (p.tm)

Fig. 3.7. Total dispersion D and relative contributions of material dispersion
DM and waveguide dispersion Dw for a conventional single-mode fiber. The zero-
dispersion wavelength shifts to a higher value because of the waveguide contribu-
tions (from [391)

Figure 3.7 plots the parameter DA for plane wave propagation in silica [39,
40], where

_ A den
Da

c dal
. (3.43)

The parameter is derived from /3" by noting that the second derivative of 0
with respect to w can be written in terms of the second derivative of n with
respect to A (whereas when written in terms of derivatives of n with respect
to w it would involve do/dw as well). The second derivative of /3 with respect
to frequency is

d2,3 2

dw2 - 2 / C/ \dA2/
(3.44)

and thus Da is proportional to /3". Figure 3.7 includes both the "waveguide
dispersion" due to fiber geometry and the material dispersion.
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3.4 Perturbation Theory

We are often interested in the change of the propagation constant caused by
a small change of the index distribution. Thus, for example, the Kerr effect
which changes the index as a function of electric field intensity, can change
the propagation constant. The E field obeys the vector Helmholtz equation.
If we separate the Laplacian into longitudinal and transverse components we
obtain

OTE+w2a0eE-,32E = 0 . (3.45)

In this equation we treat e as a continuous function of the transverse coordi-
nates x and y. We suppose that e changes by 8e, E by 8E, and /3 by 6/3. These
perturbations obey an equation that is derived from (3.45) by perturbing it
to first order:

OT 6E + w2/.Goe 6E + w2 y, 8e E - /32 8E - 2/3 8/3 E = 0 . (3.46)

We dot-multiply (3.46) by E* and the complex conjugate of (3.41) by 8E
and subtract, and integrate over the cross section. Solving for 6/3, we find

f °ae w2µ0 dS
2/3 8/3 = ae°"°" (3.47)

sec-s
ction

where dS = dx dy is an area element in a plane transverse to z. Note that
8E has dropped out. We need not know the change of E to first order to
be able to evaluate the change of the propagation constant. This is a very
important finding that facilitates the introduction of perturbations into the
propagation equations.

3.5 Propagation Along a Dispersive Fiber

Uniform waveguides propagate waves in both directions along the axis of the
waveguide. We have had ample opportunity to study such modes in metallic
waveguides. The propagation along dielectric guides and optical fibers is com-
pletely analogous. Here we develop the propagation equation for a traveling
wave of a mode in a phenomenological way. Waves in metallic waveguides are
just one special case in this more general approach. We consider a wave of an
eigenmode in a lossless, uniform (with respect to z) wave-guiding structure,
with the amplitude spectrum A(w, z). Its z dependence is simply eipZ. The
wave obeys the differential equation

azA(w, z) = if(w)A(w, z) . (3.48)
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The propagation constant is a function of frequency. We concentrate on an
investigation of a wave of narrow bandwidth within a frequency interval cen-
tered at the nominal carrier frequency wo. Carrying out an expansion to
second order in the deviation Aw from the carrier frequency, we obtain (see
Fig. 3.8)

)o + Aw /3' +
1

2
Qw2 /3" (3.49)

where we use the following abbreviations:

/30=OP.),
d/3 1

(3.50a)

,Q' _ = - (inverse group velocity) , (3.50b)
dw vy

/3 = d2)3
j;-2 (group velocity dispersion) . (3.50c)

slope

Act)

Wa

Fig. 3.8. Definition of parameters

In the next step, we take advantage of the narrowness of the spectrum.
The spatial dependence at the carrier frequency is exp(i/3oz). The spatial
dependence of the entire spectrum will deviate from this dependence, because
the frequencies of the Fourier components differ from wo by ,Aw. We write

A(w, z) = a(Aw, z) exp(i/3oz) . (3.51)

When we introduce the ansatz (3.51) and the expansion (3.49) into (3.48),
we obtain

a a(.Aw, z) = i Aw,(3' + 2LXw2 /3" I a(.Aw, z) . (3.52)

We find that the spatial dependence of a(.Aw, z) is much slower than that of
A(w, z). Next we look at the temporal dependence of A(w, z) by taking its
inverse Fourier transform:
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A(t, z) = jooe_tw,z)

00= exp(-iwot + if3oz) J dAw exp(-i Aw t)a(,6w, z)
-00

= Ciw, t+iooza t z)

where a(t, z) is the inverse Fourier transform of a(.,Aw, z). The fast space-
time dependence of the wave amplitude is removed from a(t, z), the so-called
envelope of the wave. We further note the relation

J
oo

daw exp(-i w t)(i aw)ma(dw, z) _ (-1)m
am

a(t, z) . (3.54)

Multiplication by (i Zw)m of the Fourier transform a(dw, z) produces (-1)m
times the mth derivative of the inverse Fourier transform. Using this fact, we
may inverse Fourier transform (3.52) to obtain

a 1 as _ i ,, 82a

aza+ v at 20 at2
(3.55)

9

If we introduce a new time variable that removes the time delay z/v9,

T = t - z
(3.56a)

V9

= z , (3.56b)

we obtain the equation

as i a2a
a 2'8 are (3.57)

This is the propagation equation for a mode in a fiber with group velocity
dispersion. It also happens to be the Schrodinger equation of a free particle
in one dimension.

3.6 Solution of the Dispersion Equation
for a Gaussian Pulse

We shall now solve the group velocity dispersion equation. For simplicity and
flexibility in notation we again denote the distance variable by z and the time
variable by t, writing for (3.57)

as i a2a
az 2I3 ate '

(3.58)
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This equation has the simple solution

ib t2
a(t, z) = A°

z + ib
exp - i

2011 (z + ib) )
2

= A° T exp (- 0 exp (- i6(t, z) + io(z))

where

r 2
T2=Ta

Z
I 1+62)

z
9(t, z) =

2/3"(z2 + b2)
t2

,r.°2 = 2,3"b

and

2tan-1 (b)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

A pulse that is initially of constant phase at z = 0 acquires a time-dependent
phase given by (3.61); it becomes chirped. Since a0/at can be identified with
the instantaneous frequency, a Gaussian pulse propagating in a dispersive
system acquires a time-dependent frequency (chirp). In doing so, it broadens
(see (3.59)). The chirped pulse acquires a width that is greater than would
be inferred from the width of the spectrum for an unchirped (transform-
limited) pulse. The system being linear, the spectral width cannot change
with propagation.

The propagation of a Gaussian pulse along a dispersive fiber bears a close
analogy to the diffraction of a beam as discussed in Sect. 3.1. The paraxial
wave equation (3.17) resembles the propagation equation along a dispersive
fiber, except that the diffraction equation contains two second derivatives
instead of one. If the diffraction equation is applied to a slab beam with one
transverse dimension, the analogy becomes complete. Comparison of (3.18)
and (3.59) shows the close resemblance. In two dimensions, the amplitude of
the mode must decrease asymptotically linearly with 1/z; in one dimension
the amplitude must decrease asymptotically as 1//. This fact accounts for
the multiplier -ib/(z - ib) in (3.18) and the multiplier 1b/(z + ib) in (3.59).

The equation for dispersive propagation, analogously to the equation for
diffraction of a one-dimensional slab beam, has a complete set of solutions.
An initial excitation can be expressed as a superposition of these solutions.
In analogy with the problem of a beam in two dimensions, with the solutions
(3.25), the solutions of the equation of dispersive propagation are
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V5m(t, Z) = T° OM
(-t

/
exp[-i6(t, z)] exp[i(m + n + 1)0(z)] , (3.64)

where we again denote the Hermite Gaussian of mth order by c,,,,. The
solutions are orthogonal, permitting the evaluation of the coefficients of
the Hermite Gaussians for an input excitation a(t, 0) from the integrals
f dt a(t, 0)cb,,,,(vt/'ro). Identities that help in the evaluation are presented
in Appendix A.2.

3.7 Propagation of a Polarized Wave
in an Isotropic Kerr Medium

The simplest model of a Kerr medium is an isotropic medium in which the
polarization is an instantaneous function of the cube of the electric field:

P(t) = eox(3)E2(t)E(t) , (3.65)

where x(3) is the third-order susceptibility and the alignment of the polar-
ization and field is implied by using scalars. The endpoints of P and E could
follow complicated temporal curves, depending upon the temporal evolution
of the E field. Suppose that at a particular instant the E field points in the
(general) direction

E = E.,i,; + Eyiy + EZiZ (3.66)

The polarization points along the E field and is given by

P. = eoxi3iEx(Ex + Ey + EZ) (3.67)

Py = Eoxl3iEv(E, + Ey + EZ) (3.68)

and

PZ = Coxi3iEZ(EZ + Ey + EZ) . (3.69)

Suppose next that the E field has one single frequency and lies in the x-y
plane. Then

E. (t) = 2 [E(w)e-iwt + EZ(w)]e+iwt (3.70)

where E.,(w) is a shorthand for jEE(w)Ie-'Os, etc. When we introduce the
above expression into (3.67)-(3.69) and retain only the terms with an e-iWt
dependence, we obtain
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1
2P,(W) = EoX

(3)

8 [3I EE(w)l2Ex(w) + 2jEy(w)l2Ex(w)
(3.71)

Ey2+(w)Ez(w)]

This expression consists of three types of term. There is the self-modulation
term X(3)3IExI2Ex, which is the only term surviving when the field is polar-
ized along x. Then there is the cross phase modulation term, which looks like
a change of index produced by the Ey component and seen by the x com-
ponent of the E field, namely 21Ey12Ex. Finally, there is a "coherence" term
which produces an x polarization due to Ex and depends on the phase of Ey.
This is a term utilized in four-wave mixing. In a birefringent fiber, in which
the two orthogonal polarizations have different propagation constants, with
the slow axis along x and the fast axis along y, these effects will cancel on av-
erage, because they will contain spatial dependences like exp i(2ky -kx)z, and
the optical nonlinear effects take place, generally, over distances much larger
than the period of intrinsic birefringence of even so-called nonbirefringent
fibers.

Now let us relate this expression to the commonly employed Kerr nonlin-
earity in which the index is written

n = no + n2I (3.72)

and I is the intensity (power per unit area) of the field. The polarization P
is defined by

P = Eo(n2 - 1)E = {Eo(n2 - 1) + 2Eonon2I] E , (3.73)

where the last term is clearly the contribution of the nonlinearity. Thus

(3)

2Eonon2I = 3Eo 4 JEx I2 (3.74)

in the case of a linearly polarized field. Therefore, since the intensity I is
given by

I= IEIEx12n = 1c.noClEx12
2 20

we have for n2

3 X(3)
n2 = 4

Eono2c

(3.75)

(3.76)

In glass, the coefficient n2 has the value [40-46]
n2=2.2x10-16cm2/W.
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3.7.1 Circular Polarization

It turns out that it is convenient to introduce circularly polarized modes by
means of

E. _ (E++E-) , (3.77a)

E = -E )(E
3 77by

i
+ ,- ( . )

so that

E+ = 1 (E. + iEy) (3.78a)

E-= 1 (Ex-iEy). (3.78b)

If we then evaluate

P, f iPy = Pt (3.79)

we find from (3.71) that

X )

(IE I2)EP I2 + 2IE= (3 80)
Eo 2f :F ± .± .

The presence of a circular polarization of opposite sense of rotation affects
the index twice as strongly as the original polarization. We find the very
interesting result that circular polarization does not exhibit a "coherence"
term that depends on the relative phase between the two polarizations of E,
unlike the coherence term for linear polarization. There is a simple reason
for this fact which it is well to remember. Consider a linear polarization
in an isotropic medium. The linear polarization can be represented by two
counterrotating circular polarizations of the same amplitude. Suppose that
there were a coherence term in (3.80) involving E+ or El. Then the evolution
of the polarization would depend upon the relative phase between E+ and
E_ . But this is not possible, because a change of the relative phase means
rotation of the linear polarization, and we know that the evolution of the
polarization cannot depend on the orientation of the linear polarization in an
isotropic medium.

The analysis of the propagation of polarized light in a uniform medium
can be applied directly to the propagation of the fundamental mode in a
weakly guiding fiber. Indeed, the mode is essentially linearly polarized; two
orthogonally polarized modes experience coupling very much like plane waves,
except that the coupling coefficient must now include the mode profiles. The
ratio of the coefficients of the self-phase modulation, cross phase modulation
and coherence terms still remains 3 to 2 to 1.
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3.8 Summary

In this chapter we have presented the analysis of Hermite Gaussian modes in
free space. These are used to construct optical resonators and hence are basic
to laser operation and to the quantization of optical fields in such resonators.
We have presented an analysis of modes in optical fibers and discussed their
dispersion. The dispersion is caused partly by the geometry of the index pro-
file and partly by the material dispersion of glass. It is possible to manipulate
the net dispersion by changes in the index profile. Whereas the zero-dispersion
wavelength of a glass fiber with a step index profile is roughly 1.3 µm, it is
possible to shift the zero-dispersion wavelength to 1.5 µm, the wavelength re-
gion of the erbium-doped fiber amplifier, by proper choice of the index profile
of the fiber core.

An isotropic Kerr medium with an instantaneous response has a very
specific response to signals with two orthogonal polarizations. The response
contains a "coherence term" which is a function of the phase between the two
signals. In the circular-polarization basis the response is much simpler, and
no coherence term is present. Even though the analysis holds strictly only for
plane waves, the formalism can be applied to modes in optical fibers, which
are almost entirely linearly polarized. The change of propagation constant
follows from the perturbation formula developed in Sect. 3.4. The Kerr effect
is a nonlinear effect that affects long-distance fiber communications. It is
either combatted by group velocity dispersion management (varying GVD
along the fiber), in the so-called non-return-to-zero format of communications
currently installed in repeaterless transoceanic cables, or used to balance the
group velocity dispersion of fibers in long-distance soliton communications,
as taken up in Chap. 10. The Kerr effect is also used to generate squeezed
states of radiation, as discussed in Chaps. 12 and 13.

Problems

3.1 An optical wave passing through a thin convergent lens in the x-y plane
acquires the phase profile

(1)

where f is the focal length. This means that the complex wave amplitude is
multiplied by

expji[0o_2f(x2+Y2)]} (2)

Prove this statement by considering the ray-optical picture of rays, normal
to the phase front, heading for a focus.
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3.2* The z dependence of a diffracting Gaussian beam is twofold.

i. The solution contains the factor 1/(z - ib). This multiplier gives a phase
advance 0 = arctan(z/b), and a change in amplitude to compensate for
the beam expansion. These parameters are of lesser interest than the next
item.

ii. The solution also contains the exponential dependence exp[ik(x2 + y2)/
2(z-ib)], which represents the changing beam diameter and phase profile.

The parameter z - ib is the so-called q parameter and contains all the
above information: Re(1/q) = 1/R, where R is the radius of the phase front,
and Im(1/q) = A/7rw2, where w is the beam diameter.

(a) As the beam passes through a set of lenses and free-space intervals, the q
parameter transforms very simply. Propagation over a distance d yields
q' = q+d; passage through a lens of focal length f gives 1/q' = 1/q-1/f.
Prove this statement.

(b) For a beam Ao exp[-(x2 + y2)/w2] passing through a lens of focal length
f, find the position of the minimum beam diameter and its magnitude.

3.3* Show that, in the paraxial approximation, a mirror of radius R focuses
a normally incident beam like a lens of focal length R/2.

3.4 A Fabry-Perot resonator mode between two curved reflecting mirrors of
radius R, a distance d apart, their concave sides facing each other, supports a
mode with a minimum beam diameter w,, in the symmetry plane. The beam
propagation can be broken down into a sequence of focusing lenses of focal
length R/2.

(a) Evaluate the q-parameter transformation for propagation from the sym-
metry plane to the mirror, reflection by the mirror, and propagation back
to the symmetry plane.

(b) Evaluate the q parameter that repeats itself under this transformation.
(c) Show that beyond a certain critical distance d, there are no Gaussian

beam solutions.

3.5 The Gaussian solution for two-dimensional diffraction, such as for a slab
beam, is

1 ik(x2 + y2)

z-ibeXp [ 2(z-ib) ] (1)

Two-dimensional diffraction is in one-to-one correspondence with dispersive
propagation of a pulse of the form A, exp(-t2/To) along a fiber of dispersion

". A filter that puts a phase profile exp[-i(t2/27.2)] onto the pulse affects
the dispersive propagation similarly to the way a lens affects diffraction. The
q parameter describes dispersive propagation equally well.

Describe how the pulse A. exp(-t2/-r,) propagates after passage through
a filter that puts a phase profile (t2/27) onto the pulse.
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3.6 The electric field of a Gaussian beam (3.22) has an x component and a
z component. The z component can be separated into a part that is in phase
with ib and one that is in quadrature with 0. The in-phase component is
responsible for the curvature of the field lines, which is equal to the curvature
of the phase fronts. Prove this statement by evaluating Re(Ez/Ex) and noting
that (see Fig. P3.6.1)

tang=B=R=-ReIE-,l.

-Re[EZ/EX1=tan gI
phase front

z-
Fig. P3.6.1. The phase front and the definition of 0

(1)

3.7* Determine the dispersion parameter d2,<3/dw2 for the model of a dielec-
tric developed in Prob. 1.6. Sketch wpc(d2/3/dw2) versus w/wf, for wo/w, =
0.5.

3.8 Use the perturbation approach to evaluate the change of the propagation
constant of the dominant-mode wave above cutoff in a square metallic wave-
guide of dimensions a x a caused by a dielectric rod of radius R and dielectric
constant e at the center of the waveguide. Assume R << a.

3.9 The major and minor axes of a polarization ellipse rotate under the
influence of the Kerr effect. Find the ellipticity of the ellipse, JElrnin/IElmax,
for which the product of the rate of rotation and the transmission contrast
(Tmax - Tmin) is maximized at a given power (assuming that the field is
transverse to the direction of propagation).

3.10 This problem is relevant to so-called polarization mode dispersion in
fibers. Consider the excitation column matrix

Lay
a

j
containing the excitations of the x and y components of the E field of the
mode. The output b is related to the input by a transfer matrix T obeying
the losslessness condition.
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Show that there are two orthogonal "principal" polarization state pairs
a(l) (w) = a(l) and a(2) (w) = a(2) (w+,Aw) that transform into b(I) (w)
andW)(w+aw) = b(I>(w)+(db(I)/dw)aw,with db(I)/dw =)(I)b(I>, I = 1,2,
where A is pure imaginary. Use the results of Probs. 2.6 and 2.10. The proof
forms the basis of the analysis of pulse propagation in birefringent fibers.
The two principal polarization states have distinct group delays. The energy
trapped beween the two nodes of the wave packet remains trapped. Thus, the
two principal polarization states have definable energy and group velocities.

Solutions

3.2

(a) The fact that q' = q + d when the beam travels over a distance d follows
from its definition. Next, consider the inverse of the q parameter z - ib.
The imaginary part of the inverse of the q parameter gives the beam
radius

Im
1 = b = A

z - ib z2 + b2 7rw2

and the inverse phase front radius is

Re
1 = z

z-ib z2+b2

The lens transforms 1/q into 1/q', where

1 z 1 b 1 1
q , =

Z 2
- f

+
Z 2

= q - f

(1)

(2)

(3)

(b) The minimum beam diameter is found where the q parameter becomes
pure imaginary. The initial value of q is given by

1 . A

2
.q

7rw

After passing through the lens, the q parameter is

1 . I\ 1

q' 7rw2 f
After passing through a distance d, the new q parameter is

1 1/ f + i(A/7rw2)
q = i(A/7rw2) - 1/ f + d _1/f2 + (A/7rw2)2 + d

_ 1/ f + i(A/7rw2) - d[1/f2 + (A/7rw2)2]
1/f 2 + (A/7rw2)2

(4)

(5)

(6)
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The position of the minimum beam diameter is where q' is pure imagi-
nary:

fd=
[1 + (Af /7rw2)2]

(7)

The value of the minimum beam diameter is obtained from (6) for the
value of d given by (7):

q - - i(A/irw 2) - 7rwmin

1/f2 + (A/7rw22
1

A

or

(8)

. 7rw22 (f l )
7rwmin - Af

1 + (Af/7rw2)2 (9)

3.3 Figure S3.3.1 shows two rays, one along the axis of the mirror, the other
parallel to it. If the separation is small compared to R (paraxial approxima-
tion), it is easily seen that the two rays intersect at a distance R/2 in front
of the mirror. This proves the fact that a spherical mirror acts as a lens of
focal length R/2.

Fig. S3.3.1. Ray construction for focus of spherical mirror

3.7 The dielectric constant of the medium has been obtained in Sect. 1.7

f l
E = CO +

w
w2

P2

w2] (1)
L o

where wP2 = q2N/eom is the square of the so-called plasma frequency. The
propagation constant is

Q=w
µoEo(1+wp2

w2 w2 (2)
0
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Over part of the frequency range the propagation constant is pure imaginary.
In this frequency regime no propagating waves exist. The second derivative
is (Fig. S3.7.1)

- 1 1 aE 1 a2E 1 (af) z
C EEo aW + 2W aW2 4Ew aw

The individual derivatives are

aE

aw - Eo
(WZ - W2)2

1

0

a2E (f 2w2 8w2wp

.2
- Eo

(W22 - W2)2 + (w - w2)3&L,

P

imaginary

-25

-50

-75

-100

0.5

2ww2
P

1.5

(3)

(4)

Fig. S3.7.1. A plot of wpc,3" versus w/wp





4. Shot Noise and Thermal Noise

It is well known that electronic amplifiers introduce noise. The noise can be
heard in any radio receiver tuned between stations. Some of the noise comes
from the environment, but most of the noise is generated internally in the
amplifiers. One source of amplifier noise is the shot noise that accompanies
a flow of electric current. Another source is thermal noise, emitted by any
resistor at any given temperature. Amplification is a nonequilibrium process,
and thus amplification involves noise sources other than thermal sources.

Shot noise was first analyzed by Schottky in 1918 [2]. He was studying the
noise associated with the emission of electrons from a cathode in a vacuum
tube and set himself the task of deriving a quantitative description of the
effect. The name derives from the sound made by a fistful of gunshot dropped
on the floor (der Schrot Effekt, in German) and not from an abbreviation of
the name of its discoverer. In his paper, Schottky was asking the question
as to whether there are fundamental limits to the signal-to-noise ratio set by
the noise in vacuum tube amplifiers.

It is a fact that shot noise can be reduced by utilizing the mutual repul-
sion among the negatively charged electrons. An electron emitted from the
cathode can inhibit the emission of electrons following it. This process is uti-
lized to reduce the noise emission from cathodes in traveling-wave tubes [47].
On the other hand, if both the amplitude and the phase of an optical wave
are to be detected in a heterodyne experiment (Chap. 8), one cannot rely on
the repulsion effect if the amplitude changes of the wave are to be faithfully
reproduced at frequencies as high as optical frequencies. In this case the full
shot noise level has to be accepted. It turns out that shot noise is the funda-
mental noise process required to satisfy the uncertainty principle applied to
a simultaneous measurement of the amplitude and phase of an optical field
in heterodyne detection, as discussed in Chap. 8.

The power radiated by a "black body" at thermal equilibrium was derived
by Planck. In order to arrive at a formula that agreed with Wien's law, he
postulated the quantization of the electromagnetic energy. The classical limit
of the Planck formula applied to a single mode of radiation gives the Nyquist
formula [48]. The Nyquist noise is present in electronic circuits operating at or
near room temperature. Electronic amplifiers are nonequilibrium devices and
hence may be affected by other forms of noise in addition to shot noise and
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thermal noise. For the analysis of the signal-to-noise ratio of such amplifiers
it is sufficient to know the mean square fluctuations of the amplitudes of the
various noise sources expressed in terms of their spectral densities. This will
be discussed in detail in Chap. 5.

The energy fluctuations of a mode at thermal equilibrium are predicted
by the Bose-Einstein formula, which is derived at the end of this chapter. The
Bose-Einstein fluctuations play an important role in the optical amplification
of a digital bit stream (pulses and blanks), as discussed in detail in Chap. 9.

In this chapter we derive the spectrum of shot noise. Next we find the
probability distribution of photoelectron emission from a thermionic cathode
or the current in a p-n junction. We derive the power spectrum of the thermal
noise associated with the waves of a uniform waveguide and the modes of a
resonator from the equipartition theorem. We show that loss in a waveguide
or a circuit calls for the introduction of noise sources if the circuit is to be at
thermal equilibrium, and we derive the spectra of these so-called Langevin
sources. We consider lossy multiports and identify the noise sources required
for thermal equilibrium.

Finally, we derive the probability distribution of photons at thermal equi-
librium, the so-called Bose-Einstein distribution, by maximization of the en-
tropy. This is the energy, or power, distribution of thermal radiation. In the
classical limit, the distribution becomes exponential. With a slight modifica-
tion, the derivation can be used to show that a Gaussian amplitude distribu-
tion maximizes the entropy. It is also easily shown that the energy distribution
of a Gaussian-distributed amplitude is exponential, the classical limit of the
Bose-Einstein distribution.

4.1 The Spectrum of Shot Noise

Schottky assumed that the emission of the electrons was purely random. In
deriving the shot noise formula, we shall adhere to the same assumption. We
consider a diode consisting of a cathode and anode as shown in Fig. 4.1. The
anode is a.c. short-circuited to the cathode. An electron emitted from the
cathode induces a current in the short circuit that is a function of time, h(t),
extending from the time of emission to the time of collection, a time T later,
where T is the transit time. The current in the short circuit within a time
interval T is

i(t) = q > h(t - tr) , (4.1)
r

where -q is the electron charge, tr is the time of emission, and the summation
is over all emission events within the time interval T.

The function h(t) has area unity, f ±.00 h(t)dt = 1. The shape of the func-
tion depends on the velocity of the electron during transit. Figure 4.2a shows
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ac
+ blocking coil

i(t)

o ---o- electron

cathode anode

Fig. 4.1. Schematic illustration of diode emitting electrons

how one would evaluate the function. The point charge traveling between
the two perfectly conducting plates of the cathode and anode induces image
charges in the plates. The distance between the electrodes is assumed to be
much smaller than the transverse dimensions of the electrodes. In order to
satisfy the boundary conditions of zero tangential electric field on the elec-
trodes, the charge and the image charges have to be repeated periodically
along the x direction. The charge and its images are spatial unit impulse
functions. These impulse functions can be represented by a Fourier series in
the transverse dimensions y and z. The leading term in the Fourier expansion
is a uniform surface charge density. All other Fourier components have zero
net charge and do not contribute to the net charge. Hence, the net induced
charge in the plates can be evaluated from the sheet charge model as shown
in Fig. 4.2b. The E field is uniform on either side of the charge sheet, as
shown in Fig. 4.2b, with a jump at the sheet:

E.(Ex+ - Ex-)A = -q, (4.2)

where A is the area of the electrodes (of transverse dimension much larger
than their spacing). The fields on the two sides have to give zero net potential
difference. Therefore

Ex-x = -Ex+(d - x) . (4.3)

Solving for Ex_, one obtains from these two equations

EoEx_A= d dxq

On the left-hand side is the net image charge in the cathode. Its time rate of
change is given by the derivative and gives the current that passes from the
anode to the cathode:

i(t) = -q- , (4.5)
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cathode

cathode

anode
(a)

surface charge density -q/A

potential

d-x

(b)

anode image-charge sheet

Fig. 4.2. (a) The charge and image charges in the space between the electrodes (in
fact, there is an infinite number of image charges repeated periodically). (b) The
set of sheet image charges

where v is the velocity of the electron. The integral over all time of the
current is equal to -q, irrespective of the time dependence of the electron's
velocity. The simplest case is when the velocity is a constant. Then the time
dependence of the current is a square-wave function of duration T, the transit
time, and of unity area. The analysis applies equally well to the carrier flow
in a p-n junction diode, either electrons or holes.

Next, we evaluate the autocorrelation function of the current induced by
charges entering at times tr. The spectrum of the current is then obtained
by a Fourier transform of the autocorrelation function (Appendix A.4). The
current is the superposition of the individual current pulses:

i(t)=q>h(t-tr)
r

where h(t) is the temporal dependence of the current induced by a charge,
and the sum is extended over a long sample of duration T, ideally infinitely
long. Figure 4.3 shows samples of filtered shot noise. The autocorrelation
function is
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(i(t)i(t - T)) = q2 h(t - tr)h(t' - tr') ) with t' = t - T , (4.7)

where the angle brackets indicate a statistical average over an ensemble of
sample functions. If the arrival times are random, then one must distinguish
between product terms referring to the same event at tr and different events
that occur at different time instants, r # r:

12

10

8

6

4

2

0 0.5 1

time (µs)

1.5 2

Fig. 4.3. Filtered shot noise as a function of time; filter center frequency 1 MHz,
filter bandwidth 50 kHz

(i(t)i(t - T)) = q2 ( E h(t - tr)h(t' - tr'))
r=r' l

+q2 E h(t - tr)h(t' - tr }

l

We look first at the case in which the probability of events is time-
independent, a stationary process. The events occur at times randomly dis-
tributed over tr. Within the infinitesimal time interval dtr the probability of
occurrence is R dtr, where R is the average rate of occurrence. We have

( h(t - tr)h(t' - tr')) = R f dtr h(t - tr)h(t - tr - T)
r=r' l (4.9)

= Rf dth(t)h(t

The summation over different events calls for averaging of each of the factors,
since the events are assumed to be statistically independent:
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( h(t - tr)h(t' - tr')) ti
E

h(t - tr)) h(t' - tr')
r¢r' ( r

(4.10)

= J Rdtr h(t - tr) fRdtr' h(t' - tr) = R2 .

We have used the approximation sign, since for N events in the time interval
T, the double sum contains N(N - 1) terms, with the terms r = r' omitted.
If the samples are very long, as assumed, and N -a oc, the approximation is
a good one. Thus, we find for the autocorrelation function

(i(t)i(t - T)) = q2 [Rfdth(t)h(t - T) + R2] . (4.11)

The spectral density is the Fourier transform of the autocorrelation function:

O2(w) = 2 J T)) exp(iwr) = 2 [RIH(w)I2 + 21rR2b(w)] ,

(4.12)

with

IH(w)12 = J dTr f dt h(t)h(t - T) exp(iwT)

= J dt h(t) exp(iwt) J d(t - T) h(t - T) exp[-iw(t - T)] (4.13)

= H(w)H*(w) ,

where H(w) is the Fourier transform of h(t). Note that H(0) = 1. The first
term is the shot noise spectrum; the second term is the delta function at
the origin expressing the deterministic part of the spectrum associated with
the d.c. current. If the current pulses are short compared with the inverse
bandwidth under consideration, the functions h(t) can be approximated by
delta functions and the noise spectrum becomes flat, i.e. "white":

2

iPz(w)
2_

[R + 27rR28(w)] . (4.14)

If the spectrum is measured by a spectrum analyzer with a filter of band-
width aw centered at a frequency w0, both sides of the spectrum, correspond-
ing to positive and negative frequencies, are accepted. The measured mean
square current fluctuations are

2

20i(wo)Qw = Q Raw = 2gI,,B ,

ir
(4.15)
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with Io = qR, the d.c. current. This is the famous shot noise formula, where
the bandwidth B in Hz is B = Aw/2,r.

If the current consists of a distribution of different response functions,
all of unity area, that are independent of the time of the event, then the
analysis changes very little. A second average has to be taken over the spectral
response, so that IH(w)I2 -> (IH(w)I2)

If the rate R of the charge carrier flow is itself a function of time, the
analysis can be modified to accommodate this time dependence. Consider
the expectation value of the current

(i(t)) = q h(t - tr) = q f dtr R(tr)h(t - tr) . (4.16)
r

Next, construct the autocorrelation function of the current. First, we evaluate
the summation over the same events, tr = tr:

h(t - tr)h(t - T - tr,) = q2 f dtr R(tr)h(t - tr)h(t - T - tr) .

(4.17)

This is a convolution of the function R(t) with the function h(t)h(t -T). The
summation over independent events at different times gives

q2(E h(t - tr)h(t - T - tr,))
r:`r' r r (4.18)

= q2 J dtr R(tr)h(t - 4) J dtr' R(tr')h(t - T - tr') .

Therefore the correlation function becomes

(i(t)i(t - T)) = q2 / dtr R(tr)h(t - tr)h(t - T - tr)
19)(4 .

+q2 f dtr R(tr)h(t - tr) f dtr,R(tr,)h(t - T - tr') .

The autocorrelation function depends not only on the time difference T, but
also on the time t, since the emission rate is time-dependent.

If the rate R(t) is deterministic, then the second term in (4.19) can be
recognized as the product of (i(t)) and (i(t - T)). The fluctuations of the
current are obtained by subtraction of (i(t))(i(t - r)) from (i(t)i(t -T)):

(i(t)i(t - r)) - (i(t))(i(t - T)) = q2 f dtr R(tr)h(t - tr)h(t - tr - T) .

(4.20)

In the case where the emission rate itself is a stationary statistical function,
an additional average over the ensemble of R(t) renders the process stationary
and makes the autocorrelation function time-independent [491:
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(i(t)i(t - T)) = g2(R(t)) f dtr h(t - tr)h(t - T - tr)
(4.21)

+q2 J dtr J dtr' (R(tr)R(tr'))h(t - tr)h(t - T - tr,) .

In preparation for the evaluation of the spectrum of (4.21), we transform the
second term by noting that (R(tr)R(tr')) is a function of the time difference
tr - tr' = r' only, if the signal statistics are stationary. One then has

g2 f dtr f dtr'(R(tr)R(tr'))h(t - tr)h(t - T - tr')

= q2 f dT'(R(tr)R(tr - T')) f dt h(t)h(t - T + T') .
(4.22)

This term is the convolution of the autocorrelation functions of the rate
function R(t) and of the detector response h(t). Its Fourier transform is the
product of the Fourier transforms cPR(w) and JH(w) 12. We obtain for the
spectrum of the current, the Fourier transform of (4.21),

Oz(w) L[(R(t)) + 270R(w)]IH(w)I2 . (4.23)

The first term is the shot noise contribution to the spectrum; the second term
is the contribution of the signal. It is remarkable that the shot noise part of
the spectrum still has the form for a process with a constant rate R, except
that this rate is replaced by its average.

4.2 The Probability Distribution of Shot Noise Events

In the preceding section, we derived the spectrum of shot noise. This spec-
trum would be measured by a spectrum analyzer responding to the current
fluctuations of the diode. There are other ways of interpreting the statistical
process of the current, or charge, fluctuations. One may ask for the probabil-
ity p(n, T) that n charge carriers have been emitted from one of the electrodes
if the rate of emission is R. This is obtained by deriving appropriate differ-
ential equations for the probabilities p(m, T) for m < n [50, 511. Consider,
first, a very short time interval QT, in the limit AT - 0, and ask for the
probability of emitting one electron in this time interval. This probability is

p(1, T) = Rdr . (4.24)

The probability of emitting more than one electron is negligible, and thus the
sum of the probabilities of emitting no electron, P(0, ar), and of emitting
one electron, P(1, AT), must be equal to one:

A0, QT) + p(1, 10 = 1 . (4.25)
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Next, let us find the probability p(0, T + &r) of no emission in a total
time interval T + LIT. Since the events in adjacent time slots are assumed
to be independent, the probability is the product of the probabilities of no
emission within r and no emission within aT:

p(0, T + aT) = p(0, T)p(0, aT) . (4.26)

Substituting for p(0, aT) from (4.24) and (4.25), one finds

p(0, T + aT) - p(O, T)
- -Rp(O, T) . (4.27)

aT

In the limit aT --> 0, this reduces to a differential equation, which can be
solved to give

p(O, T) = exp(-RT) ,

where the following boundary condition has been used:

P(0' 0) = 1 .

(4.28)

(4.29)

Next, consider the probability that n electrons have been emitted in a
time interval r +,AT. This is clearly

p(n, T + aT) = p(n - 1, T)p(1, aT) + p(n, T)p(0, aT) . (4.30)

Upon substituting from (4.24) and (4.25), we find in the limit aT -- 0

dp(n, T)
+ Rp(n, T) = Rp(n - 1, T) . (4.31)

dT

The solution of this equation gives a recursion formula

/'0T

p(n,T) = exp(-RT)R J drexp(RT)p(n - 1,T) . (4.32)

Evaluating p(1, T) from the above, using the expression for p(0, T), and con-
tinuing the process, we end up with

n
p(n, T) = (R exp(-RT) . (4.33)

n.

This is the Poisson probability distribution for a process with the average
number (n) = RT:

PPoisson (n) =
(n'" e -(n)

. (4.34)

We shall encounter this distribution in the quantum analysis of coherent
radiation. Figure 4.4 shows the Poisson distribution for different average num-
bers (n). One sees that the distribution becomes more and more symmetric
around the average value (n) with increasing (n).
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Fig. 4.4. Examples of Poisson distributions: (a) (n) = 50; (b) (n) = 200

4.3 Thermal Noise in Waveguides
and Transmission Lines

In this section we arrive at the formula for the thermal noise in a bandwidth B
in a system supporting single forward- and backward-propagating modes. The
TEM mode of a transmission line is a good example, and so is an optical mode
of one polarization in a single-mode fiber. The fundamental Gaussian beam
of one polarization is another example. The derivation is the one-dimensional
analog of the black-body radiation law that applies to radiation in a large,
three-dimensional enclosure.

The derivation of the mean square fluctuations of thermal noise is based
on the equipartition theorem [52]: every degree of freedom must have, on
average, an energy of Zk6 at the absolute temperature 0, where k is the
Boltzmann constant. The simple interpretation of the equipartition theorem
is that, at thermal equilibrium, all degrees of freedom have the same proba-
bility of excitation. We refer the reader to the literature [52] for the derivation
of the equipartition theorem. Here we present a simple plausibility argument
as to the validity of the theorem. A system containing N point particles
has 3N degrees of freedom. If the particles are of finite size and have finite
angular momenta, then the system has 6N degrees of freedom. If such a
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system is coupled to another one and the two systems are at thermal equilib-
rium, then both systems acquire the same temperature. A given temperature
corresponds to an average energy of each of the component particles. This
statement holds for any two macroscopic systems for which averages can be
taken over all the particles. A degree of freedom is a microscopic concept
that does not permit an average over all particles. However, it permits a time
average. The energy associated with the degree of freedom can be averaged
over arbitrarily long time intervals. At thermal equilibrium, this average must
yield a value of energy that is consistent with the average energy of each of
the degrees of freedom of each particle.

An electromagnetic mode of a resonator obeys a simple one-dimensional
oscillator equation and thus has the same number of degrees of freedom
as a one-dimensional oscillator, i.e. two. The equipartition theorem as-
signs an energy kO to the mode in the low-frequency limit, and an energy
hw/[exp(fiiw/kO) - 1] in the quantum limit. Since the thermal noise is caused
by coupling to a thermal reservoir of many degrees of freedom, the central
limit theorem [52] implies that the field amplitudes must have a Gaussian dis-
tribution. A Gaussian distribution is fully characterized by its mean square
value, and thus the distribution is known when its mean square value is
specified. At the end of this chapter we shall show that the classical electro-
magnetic field of a mode has a Gaussian distribution without appealing to
the central limit theorem.

Consider a mode of amplitude A,,, with propagation constant an of a
single-mode waveguide (in a multimode waveguide the following analysis ap-
plies to each of the modes). The propagation constant is a function of fre-
quency w,,, = and not necessarily a linear function of 13, if the waveg-
uide is dispersive. The amplitudes A,, of the modes are so normalized that
IA,,,I2 are the energies in the modes. We consider a ring waveguide closing on
itself, of very long length L. The nth mode obeys the periodicity condition

0,,L = 27rn. (4.35)

Each mode has two degrees of freedom, the electric field and the magnetic
field. By the equipartition theorem, the statistical average of the square of
the amplitude, which is equal to the expectation value of the energy, is the
energy assigned to two degrees of freedom:

(IA.I2) = kO . (4.36)

Stationarity of the process requires that the amplitudes of any two different
modes are uncorrelated. Indeed, two modes of different 3 values /3,' and ,Q,,,
have different frequencies w,,, and w,,,, and thus different time dependences.
The statistical average of the energy would vary as cos[(w1, - w,,,, )t + 0] unless

(A,,,A;,) = 0 , (4.37)



138 4. Shot Noise and Thermal Noise

and thus different modes of a stationary process must be uncorrelated. Equa-
tions (4.36) and (4.37) give full information on the thermal excitations of the
modes of a ring resonator. The ring configuration was an artifice to relate the
thermal excitations on a transmission line or waveguide to the excitations of
a set of resonances. An open waveguide or transmission line also supports
thermal excitations. However, in order to describe these excitations it is con-
venient to refer them not to a structure of length L, but rather to excitation
amplitudes whose mean square expectation values are equal to the thermal
energy per unit length propagating in the two directions along the guide or
transmission line. We now proceed with the derivation of these mode am-
plitudes. This is done by noting that the energy of a mode of length L is
converted into the energy per unit length by dividing it by L:

(AAn)
= energy per unit length in one mode . (4.38)

L

An increment of the propagation constant 48 corresponds to a set of modes
Ln, according to (4.35):

4,3 L = 27rLn . (4.39)

The energy per unit length in the waveguide is given by the sum over all
modes, an expression that can also be written as a double sum, using condi-
tion (4.37):

energy per unit length = (
An An \ _ (AnL (4.40)

The double sum can be converted into a double integral of a differently defined
mode amplitude. Note that the increment of integration A# = 21r/L. The
energy per unit length can be written

AnAm,) 1 48L12
(A-Am) _ f d,3f d,6'(a*(,3)a(O'))

n m L n,m L 27r

(4.41)

with

(4.42)

The correlation conditions (4.36) and (4.37) can be summarized in the
single equation

(a*(/3')a(/)) = LkO8(l3 - 0
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where S(3 -,T) is a delta function of unity area and height 1/LX/3 = L/27r.
The power passing a filter of bandwidth LQ = is

x energy per unit length in bandwidth ,Q

_ fdf3fd/31(a*(i31)a(13))

= 2r d
kB f d/3 f d(3'b(Q - a')

(4.44)

= d
k9a/3 = 2- kOzQ .

Note that we have considered modes labeled by their characteristic frequency
w, which was taken as positive. Thus, the spectrum (4.44) is specified only for
positive frequencies. If both positive and negative frequencies are used, then
(4.44) has to be reduced by a factor of 1/2. The power within the frequency
interval AQ is

power in frequency interval AQ = 2 kB LQ . (4.45)

Equation (4.45) is the Nyquist formula [48] for the thermal power prop-
agating in each mode in either of two directions within a bandwidth B =
,AS?/27r. The spectral density of the thermal power is independent of fre-
quency and thus the thermal power is infinite if extended over all frequencies.
This is the ultraviolet catastrophe in a one-dimensional system. An analysis
of modes in three dimensions would have led to the Rayleigh-Jeans law, with
its even more pronounced ultraviolet catastrophe. In his effort to connect
the Rayleigh-Jeans law to the experimentally observed Wien's law, Planck
introduced the quantization of energy. We shall derive this generalized form
of the Nyquist formula in Sect. 4.8 of this chapter.

It will be convenient to define mode amplitudes as a function of frequency
rather than of propagation constant. We shall denote these by a(w) and relate
them to a(/3) by requiring that the statistical average of their square give the
power flow

a(w) =
V

dwa(/3) . (4.46)

The power in a mode is given by the double integral over w of (a(w)a*(w')),
where

(a(w)a* (w')) =
21

06(w - w') . (4.47)

The different normalizations of the mode amplitudes are summarized in Ap-
pendix A.5.
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4.4 The Noise of a Lossless Resonator

Thus far we have considered a uniform waveguide supporting a single mode
propagating in both directions along the guide. The spectral density of the
thermal noise power associated with the waves in both directions was white,
according to classical theory. Reflections along the waveguide alter the spec-
tral distribution. Reflectors placed at two cross sections of the waveguide form
a resonator, open if one or both reflectors are only partially reflecting. The
redistribution of the thermal noise spectrum in such a resonator is illustrated
by analyzing the system of Fig. 4.5, a Fabry-Perot resonator supporting a
transverse mode and coupled to an incoming wave through a partially trans-
mitting mirror. There are forward and backward waves in the resonator. We
solve the problem in the limit of weak coupling to the waveguide, the case
where perturbation theory is valid. In this case, the description of the res-
onator is particularly simple (see Chap. 2, Sect. 2.12). We describe the mode
amplitude in the resonator by U(t). The amplitude is so normalized that
I U(t) 12 represents the energy in the resonator. The natural time dependence
of the mode in the closed resonator is that for when the partially transmitting
mirror is made perfectly reflecting:

U(t) = Uo exp(-iwot) , (4.48)

where wo is the resonance frequency.

U(t)

transmitting mirror

Fig. 4.5. A resonator with a single input port

An isolated resonance of a resonator is described by a second-order dif-
ferential equation in time. Such a differential equation leads to two poles in
the complex w plane. If the resonator is lossless and uncoupled to the out-
side, the poles lie on the real axis at ±w0. A convenient equivalent circuit
for the resonance is a parallel L-C circuit with wo = 1/ LC. Coupling to
the outside world moves the poles off the real axis, contributing imaginary
parts to the location of the poles, indicating decay; +wo 4 fwo - i/Te. If
the displacement is small, the Q of the resonance is high, and it is possi-
ble to ignore the coupling of positive frequencies associated with the pole
at +w, - iTe to negative-frequency excitations associated with the pole at
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-Wo - iTe. The equations of a resonator coupled to an input port reduce to
first-order differential equations. We denote the decay rate of the amplitude
due to the coupling of the resonator to the waveguide by 1/Te. The equation
for the mode amplitude U is the first order differential equation

dtU= -iwoU - TU + T a,
e e

(4.49)

where a is the wave incident upon the resonator from the input port. The
incident and reflected waves in the port are related by

b=-a+/2U.
Te

(4.50)

The steady state response of the resonator to an excitation at frequency w is

U(w) =
2/Tea(w)

i(Wo - W) + 1 /Te

The energy in the resonator is then

(4.51)

f dw fdwF(U(w)U*(wl))

(2/Te)(a(w)a*(w')) (4.52)
= f &.1) f dW' [i(wo

- W) + 1/Te][-i(Wo - w') + 1 /Tel

If we assume thermal equilibrium, then the incident wave must obey Nyquist's
theorem. When one uses the expression for the cross-spectral density of the
wave in the waveguide (4.47), one finds

f dw f dw'(U(w)U*(w')) = kO . (4.53)

The energy storage integrated over all frequencies obeys the equipartition the-
orem. This is a generalization of the equipartition theorem which is, strictly,
a statement about the energy of a resonator mode not "connected to the
outside world."

It is interesting to ask what is the energy possessed by the waves within
a resonator formed from a uniform waveguide with reflecting mirrors. In
the absence of the mirrors, the waves would have a power spectral density
(4.47) in both directions, independent of frequency. The energy spectrum in
the resonator, JU(w)12, is made up of the energy spectra of the two waves
traveling in opposite directions. The power in each of the waves is ((4.52)
and (4.47))

(2/Te) (v9 /2L) kO/ w/2rr

(wo - W)2 + 1/Te
(4.54)
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where L is the length of the resonator. At the resonance frequency w = Wo,

the power within the frequency increment Aw is

T 9 k9aw/2ir . (4.55)

Now recall the meaning of 1/Te. It is the rate of decay of the amplitude
of the resonant mode due to coupling to the outside waveguide. If there were
no coupling mirror, there would be no resonant mode, and it is clear that a
forward and backward wave occupying the segment of waveguide of length
L would leave within a time 2L/vs. Hence, the multiplier in (4.55), 7-,vg/L,
is much greater than unity. Thus, reflecting mirrors can greatly enhance the
thermal power in the propagating waves in the forward and backward waves
in a Fabry-Perot-type resonator. When integrated over the resonance, they
give an energy storage of kO as dictated by the equipartition principle.

The reader may have noticed that the analysis of a resonator as described
by (4.49) is not limited to an electromagnetic resonator. The same formalism
can be applied to an acoustic resonator. The enhancement of the thermal
radiation near the peak of the resonance is precisely the effect mentioned in
the Preface, namely the "hearing of the ocean" when a large, hollow shell is
held near one's ear.

We have found that the energy spectrum of the resonator excitation occu-
pies a narrow frequency band. The integral of the spectrum gives kO. It is of
interest to determine the spectrum of the wave reflected from the resonator.
We have

Thus we find for the Fourier component

2 a(w) [-i(wo - W) + 1/Te]a(w)
Tel(W0W)+1/Te i(wow)+1/Te

and the spectrum of b(w) is

(4.56)

(4.57)

(b*(w)b(w')) _ (a*(w)a(w')) = 2-k0(w - w') . (4.58)

The spectrum is the same as that of the incident wave. This is indeed
necessary, since the reflected wave travels along an open transmission line or
waveguide, or is a freely propagating beam. As such, it has to have the thermal
properties of a freely propagating wave. The thermal nature of the reflected
wave is maintained through two processes. (i) The resonator radiates power
within the frequency band of the resonance. This radiation is supplemented
by (ii) the reflected radiation. Outside the band of the resonance, the b wave
is solely due to reflection of the a wave.
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4.5 The Noise of a Lossy Resonator

The analysis in the preceding section dealt with a resonator coupled to a
connecting waveguide. The resonator itself was lossless. It is easy to include
loss in the analysis, using the more general equation

dU (iwo + 1 + 1 I U + -no(t) + -a (t) (4.59)
dt \ To T. /

VVV
Ta Te

The new decay rate 1/To calls for a noise source that compensates for the
decay of the thermal radiation. It is easy to determine the spectrum of the
source by analogy with the spectrum of the incident wave. Indeed, opening
the resonator to the outside world introduced a decay rate 1/Te. The thermal
excitation did not decay, since it was regenerated by the incident wave with
the spectrum

(a*(w)a(w')) = 1 kOb(w - w') . (4.60)

Hence, by inspection, one sees that the noise source no must have the spec-
trum

(no(w)no(w')) = I kGS(w - w') (4.61)

so as to compensate for the new decay rate. The physical origin of the noise
source is self-evident. Loss is due to the coupling of the radiation to the
excitation of the charged particles in the lossy medium. These charged parti-
cles in turn are thermally excited. Their thermal excitation is represented by
the noise source. Note that the spectra (4.60) and (4.61) are delta-function-
correlated. This is the consequence of the stationary character of the thermal
noise. Indeed, if components of different frequencies were correlated, the ra-
diation would become time dependent, which is not permitted in a stationary
process.

The Fourier transform of (4.61) gives the correlation function

(no(t)no(t')) = k06(t - t') . (4.62)

The noise sources are delta-function-correlated in time as well, since the spec-
trum is frequency-independent (white).

It is of interest to derive the noise source correlation function directly
from the conservation of the thermal excitation in the resonator. For this
purpose one looks at the "stripped" model of the resonator, with no output,
1/Te -> 0. The equation is then

dt = - (,wo
+

T
)

U + 1/ T no(t) . (4.63)
TO VVV TO
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The fluctuations at time t obey the differential equation

d(dtU) - -C a) (U* U) + o (U*no + n0* U) . (4.64)

The first term on the right hand side gives the decay of the thermal radiation
that must be compensated by the second term. One may suppose, at first
sight, that the noise source is uncorrelated with U, and hence the second
term should vanish. However, the delta function character of the correlation
function means that the noise source "kicks" are very large. Within At, the
excitation U acquires the average value (1/2) 2/Todt no. Thus, the term in
the brackets is

(U*no + noU) = 2(n*no)At .

VVVVVV

To To

This contribution must cancel the decay, and thus

? (nono)At = 2 k9 .
To To

(4.65)

(4.66)

Identifying the inverse of the short time interval At as the magnitude of
the delta function divided by 2ir, we derive (4.62). This is an independent
derivation of the noise source in a way analogous to the approach used in the
next section, which determines the noise sources for a distributed attenuator.

The question may be raised as to the spectrum of the noise source if
the loss of the medium is itself frequency-dependent. This problem can be
approached by a set of thought experiments. One may consider a large res-
onator, with many resonance frequencies, filled with the lossy medium. The
decay rates will now be functions of frequency. For each of the resonator fre-
quencies the noise source can be determined. If 2/7-o = 2/Ta(w) is a (slow)
function of frequency, then the spectrum of the noise source 2/Ton,, will
have the same frequency dependence. In the time domain, the correlation
function will cease to be a delta function. However, the analysis of the res-
onator as outlined above does not change, since the delta function concept
is a relative one. As long as the spectrum of the noise source can be consid-
ered white over the bandwidth of the resonator, the analysis can treat the
associated correlation function as a delta function.

4.6 Langevin Sources in a Waveguide with Loss

We have derived the thermal noise power traveling in either direction in
a uniform waveguide, i.e. the Nyquist formula (4.45). We are now ready
to treat single-mode waveguides with loss at thermal equilibrium. If a lossy
semi-infinite waveguide did not contain noise sources, then the thermal power
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incident upon it from one side would be attenuated as it propagated along
the waveguide, leading to smaller and smaller fluctuations further and further
away from the input. But at thermal equilibrium the fluctuations of the modes
in the waveguide must maintain their equilibrium value. This is accomplished
by introducing noise sources into the linear equation for the wave propagation.
The derivation of these sources, called Langevin sources after the scientist
who first introduced them, is as follows. In a lossless waveguide, the mode
amplitude a(3) obeys the differential equation

dz a(3) = i,3a(i3)

If loss is present, the equation changes into

za(f) = i/3a(f3) - aa(3) + s(,Q, z) ,

(4.67)

(4.68)

where -aa(/3) represents the loss per unit length and s(z) is the source
required to maintain thermal equilibrium. Its expectation value follows from
the requirement that the noise spectrum be conserved at thermal equilibrium:

dz
[(a((3)a*(O'))] = -2a(a(,6)a*(O')) + (s(Q, z)a*()3') + a(,(3)s*(a', z))

=0.
(4.69)

The noise sources at different cross sections of the waveguide are un-
correlated, because each segment of the lossy guide is connected to its own
reservoir of charges. Now, one might think that the local noise source and
the mode amplitude traveling through it were uncorrelated as well, because
the noise is due to the reservoir responsible for the loss, and the amplitude
impinging upon it has come from statistically independent sources. However,
there is a contribution to a(8) from the noise source s(z) that grows from 0
to L z s(z) within the distance Az. The average value is half the end value.
Thus, we have from (4.69)

-2a(a(,3)a* (/3')) + 2 Az(s(3, z)s* (/3', z) + s(/3, z)s* (/3', z)) = 0 . (4.70)

Using (4.43), we conclude that the noise source term must be equal to

(s(/3, z)s*(/3', z')) = 1 2akO6(z - z')8(,3 - (4.71)

The spatial delta function has amplitude 1/zlz within the increment of
distance zlz and is zero elsewhere. It expresses the fact that the noise sources
at two different points are uncorrelated. Because of the Gaussian character
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of the noise processes, full information on the probability distribution of the
noise source amplitude is contained in these equations.

If we replace the mode amplitude a(8) with the mode amplitude intro-
duced in (4.46), whose square is related to power flow, (4.68) remains un-
changed in form:

d
a(w) = i,Q(w)a(w) - aa(w) + s(w, z) . (4.72)Td

z

The noise source correlation function becomes

(S (w, z)s*(w', z')) = 2-2akOb(w - w')b(z - z') . (4.73)

4.7 Lossy Linear Multiports at Thermal Equilibrium

In the preceding sections, we have treated the thermal noise in a lossless
waveguide or transmission line, in a lossless resonator, in a resonator with
loss, and in a lossy waveguide. Loss calls for the introduction of noise sources
to maintain the thermal excitation. Such noise sources must be associated
with any circuit that possesses loss. The simplest such circuit is a resistor.
Figure 4.6 shows a resistor with an associated noise voltage generator Es.
The spectrum of this generator can be evaluated by a thought experiment in
which the resistor Rs terminates a lossless transmission line of characteristic
impedance Zo = R8. The power delivered by the resistor is given by

a
power delivered by resistor = (I4RI) (4.74)

If the transmission line is to remain in thermal equilibrium, the power spec-
trum delivered by it to the resistor must be equal to the power spectrum
delivered by the resistor and its source. Equating this power to the power
absorbed by the material resistor from the wave impinging upon it (compare
(4.47)), we have

(I4RI2)

=
J

dw f 2Baw . (4.75)

zo Rs

+ Es

Fig. 4.6. Resistor terminating transmission line of characteristic impedance Z.
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If we use B = L w/27r for the bandwidth instead of a radian frequency inter-
val, we have

(1E812) = 4R9kOB . (4.76)

This is an alternative form of the Nyquist formula. It is left as an exercise for
the reader to show that the noise source to be associated with a frequency-
dependent impedance Z3(w) is

(JE8I2) = 4Re[Zg(w)]k6B . (4.77)

When the series connection of the resistor RS with its thermal noise source is
replaced by its Norton equivalent, a conductance G9 = 11Rs in parallel with
a noise current generator I9 = ES/R,8, the mean square fluctuations of the
current noise source are

(11s12) = 4G9kOB . (4.76a)

An alternative derivation results if one defines the termination not as a
resistor but as a reflector terminating the transmission line. Then the de-
scription of the termination is in terms of the wave formalism:

b=ra+s, (4.78)

where a is the incident wave, b is the reflected wave, r is the reflection
coefficient, and s is a noise wave source. A forward-wave noise source mounted
at a point z' on a transmission line produces a traveling wave in the +z
direction for all z > z' and no wave in the opposite direction, z < z'. A
combination of a voltage source and a current source as shown in Fig. 4.7 can
accomplish this. In the absence of the noise source, i.e. s = 0, the termination
absorbs power within the bandwidth B = L w/27r due to the incident waves
a(w) that propagate on the transmission line at thermal equilibrium. This
power is equal to

(J dw
J

dw'[a(w)a*(w') - b(w)b*(w')] )

_ (1 - IrI2) J dw
J

dw'(a(w)a*(w')) (4.79)

(1- IrI2)kOB .

If thermal equilibrium is to be maintained, the internal noise source of the
termination must reradiate the same power:

f dw f dw(s(w)s*(w')) = (1- IF12)kOB . (4.80)

If the termination is matched to the line, r = 0 and the power radiated is
kOB. If the source is reflecting, the reradiated power is less. Equation (4.80)
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Zo E

J=E/Zo
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e

Symbol for Wave Generator:

Zo Zo

Fig. 4.7. Wave noise source

is an alternative expression for the noise associated with a termination. Of
course, this expression must be consistent with (4.76). In Appendix A.6 we
show that this is indeed the case.

The double integrals become cumbersome after a while. For this reason
it is customary to subsume the delta function correlation of all frequency
components and use simpler symbols for the Fourier components of the ex-
citations. Henceforth we shall make the replacement (see Appendix A.5)

few/2 faw/2

J
dw

J
dw'a(w)a*(w/) fla12) ,

Aw/2 Aw/2
(4.81)

and analogously for all other excitation amplitudes. Note the change of units
from a(w) to a. One may consider a to be the amplitude of the forward wave
within a narrow frequency band Zw = 27rB. Its mean square is equal to the
power within the frequency increment Aw.

The wave formalism is easy to generalize to a multiport (Fig. 4.8). The
multiport is characterized by its scattering matrix S, the column matrix of
the incident waves a, and the column matrix of reflected waves b. In analogy
with (4.78),

b=Sa+s, (4.82)

where s is the column matrix of wave noise-source amplitudes. The cor-
relation matrix (sst), where the dagger superscript indicates a Hermitian
transpose, can be evaluated by requiring that the expectation values of the
products (btibj*) of the outgoing waves have the proper values corresponding
to thermal equilibrium. From (4.82) and the fact that the noise sources are
uncorrelated with the incident waves a2, we have

(bbt) = S(aat)St + (sst) . (4.83)
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bi =:Kt
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4bN
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S

Fig. 4.8. Schematic of multiport with noise sources

Now, the incident waves in the different input ports are uncorrelated:

(aat) = kOB1 , (4.84)

where 1 is the identity matrix. The outgoing waves have the same correlation
matrix as the incoming waves. Using this fact, we obtain from (4.82)

(sst) = (1 - SSt)k9B . (4.85)

This is the generalization of the Nyquist theorem to a multiport. An
equivalent derivation was first given by Twiss [53]. Note that the noise source
correlation matrix on the left hand side is positive definite or semidefinite.
Hence the matrix (1 - SSt) must also be positive definite or semidefinite.
This means that the network has to be dissipative, as shown in the next
chapter. Indeed, only for such passive networks can thermal equilibrium be
meaningfully defined. Active networks, by definition, cannot be at thermal
equilibrium.

A lossless multiport does not require the introduction of noise sources. To
prove this we check first the condition of losslessness. We must have

btb = atStSa = ata (4.86)

or

at(1 - StS)a = 0 . (4.87)

Since the excitation amplitudes are arbitrary, we find that the scattering
matrix must be unitary:

St S = 1 or St = S-1 . (4.88)

A lossless network at thermal equilibrium does not contain internal noise
sources. Indeed, if we substitute (4.88) into (4.85) we find that the noise
correlation matrix vanishes.

- aN
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4.8 The Probability Distribution of Photons
at Thermal Equilibrium

Thus far we have studied thermal noise in lossy waveguides, resonators, trans-
mission lines, and circuits using the Nyquist formula, which is based on the
equipartition theorem. The noise spectral density in a single mode is then
white and the power in a bandwidth B is k9B. If this relation were valid
at all frequencies, the thermal power would be infinite. This leads to the so-
called ultraviolet catastrophe, which is unphysical. Quantum theory removes
the ultraviolet catastrophe by postulating that electromagnetic energy can
only occur in quanta of energy hw, where h is Planck's constant divided by 27r.
At thermal equilibrium the photon distribution must be that of maximum
randomness, i.e. maximum entropy. It can be shown that the equilibrium
state of a system can depend only on the energies of the states [54]. The
entropy of the system is [54]

S = -k EPi ln(pi) , (4.89)

where the pis express the probabilities of the states with energy Ei. Thermal
equilibrium is the state with maximum entropy. Denote the average energy
by (E). We find the equilibrium state by maximizing (4.89) under the two
constraints

and

Epi=1
i

(4.90)

Eipi = (E) . (4.91)

The task is to find the dependence of the pis on the energies Ei. The maxi-
mization can be carried out with two Lagrange multipliers that take care of
the two constraints. We extremize the function

f(pi) = -k [>Pln(P) + Al (Pi - 1 + A2 (EP - (E)
a

(4.92)

setting c )f /bpi = (9f/9A1) = Of /aA2) = 0. From a f /bpi = 0 we obtain the
equation

1+ln(pi)+Al+A2Ei=0.

We find for pi

pi = exp[-(A1 + 1)] exp[-A2Ei] .

(4.93)

(4.94)
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We see that the Lagrange multiplier Al fixes the normalization of the prob-
ability and the multiplier A2 gives the explicit dependence on energy. The
probability must depend exponentially on the energy.

Next, we consider a harmonic oscillator of frequency w0, representing a
mode in a resonator. We make Planck's assumption that the accessible en-
ergies occur in multiples of hw, where h = h/27r, and h is Planck's constant.
This assumption was justified years later when the quantization of the har-
monic oscillator was carried out according to the rules established by quan-
tum mechanics. The quantization of the harmonic oscillator will be discussed
in Sect. 6.1. Here we accept this ground rule and proceed to evaluate the
probability distribution of the energy. We obtain from (4.94)

pi -+ p(n) = exp -(A1 + 1) exp -(A2nhw) , (4.95)

where n is the level of occupancy, or the photon number as used by Einstein
in 1905 in the analysis of the photoelectric effect. The multiplier is set so that
the probabilities add up to unity

exp [-(A1 + 1)] = n=oo 1 = 1 - exp [-(A2hw)] . (4.96)
n=O exp [-(A2nhw)]

The average photon number is

n exp [-n(A2hw)] - exp [-(A2hw)]
(n) _ np(n) = n (4.97)

ex [-n(x hw)] 1 - ex [-(X hw)]n n p 2 p 2

This equation defines A2 in terms of the average photon number. We find for
the probability distribution

p(n) =
1 r (n)

(4.98)
1 + (n) 1 + (n)

0.025
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Fig. 4.9. Bose-Einstein probability distribution for (n) = 40

Equation (4.98) is the so-called Bose-Einstein equilibrium distribution
(see Fig. 4.9). To give further physical meaning to the Lagrange multiplier,
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consider the average energy (n)hw in the classical limit as h -p 0. In this
limit the energy of an oscillator with two degrees of freedom has to be equal
to kO. We find from (4.97)

lim (n)fiw = hw E nP(n) = lim
hw exp[-(A2hW)] - 1 = kB . (4.99)

nw-,o n 1 - exp[-(A2hw)] A2

The Langrange multiplier is proportional to the inverse temperature. The
average photon number is thus in general

1
(n) = exp(hw/k8) - 1 (4.100)

The average energy is hw(n). If we evaluate this average energy in the limit
of low frequencies, hw << kO, we find the value assigned by the equipartition
theorem:

hw<m O fiiw(n)
hl <ma exp(hw/kO) - 1 = kB . (4.101)

Hence, all formulae involving the power at thermal equilibrium developed in
the classical limit can be generalized to arbitrarily high frequencies by replac-
ing k9 with hw/[exp(lw/k9) - 1] (see Fig. 4.9). The Bose-Einstein distribu-
tion applies to situations more general than thermal equilibrium. Amplified
spontaneous emission is Bose-Einstein distributed, as we shall show in Chap.
9. Thus, the statistics at the output of an amplifier with no input mimic a
hot thermal source.

4.9 Gaussian Amplitude Distribution
of Thermal Excitations

We have mentioned earlier that the amplitude of a mode in a waveguide,
or in a resonator, has a Gaussian distribution since the thermal excitation
is due to coupling to a thermal reservoir with many degrees of freedom.
The central limit theorem then requires the amplitude to have a Gaussian
distribution. The Gaussian distribution can also be derived without appeal to
the central limit theorem, but rather as the distribution that maximizes the
entropy, a condition for thermal equilibrium. We may use the analysis in the
preceding section almost unchanged, if we discretize a continuous amplitude
distribution in such a way that the amplitude assumes only discrete values
Ai with probabilities pi. The constraints are

> Pi = 1 (4.102)

and
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A?pi = (E) . (4.103)

The function that is to be maximized is

f(pi) = -kLEpi ln(pd)+AlCEpi - 1) + A2>A?pi - (E))]

(4.104)

The probability distribution is found completely analogously to the solution
of (4.93):

pi = exp[-(A1 + 1)] exp[-(A2A')] . (4.105)

This is a Gaussian distribution. A transition to a continuous distribution A,
along with the normalization f +' dA p(A) = 1, gives

2

p(A) = 21rv2 exp v2) ,
(4.106)

with v2 = (E). Thus, the Gaussian distribution maximizes the entropy under
the constraint that the average energy is fixed.

Consider some further properties of a Gaussian-distributed electric field.
It is clear that the description of a time-dependent Gaussian field calls for
two components, an in-phase component and a quadrature component; one
may also characterize them as a cosine component and a sine component.
The energy, or power, is proportional to the sum of the squares of these
amplitudes. We consider an electromagnetic wave with the cosine amplitude
equal to A., and the sine amplitude equal to As. The square of the field is
normalized to the energy w in a chosen time interval, equal to the sum of A2
and A2 2 2: w = AC + A.. The expectation value of the energy w is equal to the
sum of the mean square deviations o c 2 + o . Let us determine the probability
distribution of w. The combined probability distribution of A, and As, when
the two are statistically independent, is

1

s
exp a2 dAs1Trvc exp

2o,2
dAc

2

2 2

where we have used the fact that the mean square deviations of the two fields
are equal: o- = QS 2. This probability distribution can be written as a
probability distribution for the energy w, if one integrates in the Ac-A.' plane
around a circle of constant w = A2 + AS:
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p(w) dw = f
27r

A.2 + A8 dO
2 Q2

exp -A

2Q
As

- + - A s
o

= 2Q2 exp (-22) d (A + As

_ (w) exp
\

w)) dw .

(4.108)

The probability distribution of the energy is an exponential with the average
value (w) = 20.2. The mean square fluctuations of the power are

r 2

( l
J

w2p(w) dw - (w)2 = (w)2
f(w)2

e-,,

/(w)d \ (w) / - (w)2 =
(W)2

(4.109)

4.10 Summary

Shot noise is an important example of a random process that not only occurs
in current flow through diodes and p-n junctions, but also plays an important
role in optical detectors illuminated by a light source of constant intensity.
We shall have ample opportunity to use the expressions for the shot noise
spectrum and for the Poisson probability distribution. The power spectrum of
an electromagnetic wave on a transmission line or in a waveguide was derived
from the equipartition theorem. Note that we started with the modes in a ring
resonator of assumed length L. The final expression for the power spectrum
did not depend on the length, an important justification of the formalism,
since dependence of physical quantities on such an artificial parameter would
be unacceptable. Modes of resonators coupled to the outside world do not
have a power spectral density independent of frequency. The spectral density
of the mode energy peaks at the frequency of resonance. The integral over
the resonance band yields an energy kO.

We found that linear lossy circuits call for the introduction of Langevin
noise sources in order to maintain the thermal fluctuations against the power
loss of the circuit. We derived the spectra for the Langevin sources in a lossy
waveguide and in a multiport linear circuit at thermal equilibrium. Thermal
noise of passive structures at thermodynamic equilibrium is another example
of an important process which is in close analogy with the zero point fluctua-
tions of quantum mechanics discussed later on. We derived the Bose-Einstein
statistics of photon distributions at thermal equilibrium from the condition
of maximum entropy. Finally, we obtained the Gaussian probability distribu-
tion of the amplitude of a mode at thermal equilibrium from maximization
of entropy.
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Problems

4.1* The formula for the current flowing in a diode is i = I0[exp(gV/kO) -1].
At equilibrium, this current can be thought of as consisting of two current
flows in opposite directions of magnitude I,,, each and canceling when V = 0.

(a) What are the shot-noise current fluctuations at equilibrium?
(b) The conductance of the diode at equilibrium is di/dV. What are the

short-circuit current fluctuations, from the Nyquist formula? Compare
with (a).

4.2 A receiving microwave antenna has a bandwidth B = 100 MHz. If this
antenna receives the cosmic background radiation of 2.75 K, what is the net
power received?

4.3* In the text we evaluate the number of modes in a waveguide of length
L in the frequency interval Aw by setting /3L = 21rm (periodic boundary
conditions) and determining Am = (d/3/dw)L Aw/27r. Had we used standing-
wave boundary conditions we would have set 3L = 7rm and found Am =
(d/3/dw)L Aw/7r. This is twice the previous number. The two results are not
in conflict, because the result with periodic boundary conditions includes
only forward-traveling waves. Thus, the actual number of modes is the same
in both cases.

In this problem you are asked to derive the number of standing wave
modes in free space within a cubic box of side length L. Note that

L I2+\ L I2+\LJ2=k2= c2

or

w2 L2
m2 +n 2 +P 2 =

c27r2

One may think of each mode as a point in a space of dimensions wL/c7r.
Only positive mode numbers are to be included. The number of modes in
one-eighth of a sphere of radius wL/c7r is equal to the volume (7r/6)(wL/c7r)3.
The number of modes in a shell of thickness AwL/c7r is (7r/2)(L/c7r)3w2Lw.
Noting that each mode has two polarizations, determine the electromagnetic
energy per unit volume within the bandwidth dw at thermal equilibrium at
temperature 0. You will have found the Rayleigh-Jeans law.

4.4 Sometimes one may prove relations derived from Maxwell's equations by
referring to thermodynamic equilibrium considerations.

Consider an antenna with gain G. If it is thermally excited by a sin-
gle mode waveguide, the power radiated into a narrow solid angle L Q in
the direction e, 0 is koG(®,,)(aQ/47r). By requiring that the antenna re-
ceive as much power as it transmits when in thermal equilibrium with its
environment, prove that the receiving cross section A of the antenna is
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A((9, O) = (Az/4-7r)G((9, O). Note that, by the definition of receiving cross
section, an antenna receives the power P = A(6, O)S if it is irradiated by
a Poynting flux S traveling in the direction e, ¢ as expressed in spherical
coordinates centered at the antenna.

4.5 Using the results of the previous problem, prove that the receiving cross
section of a short dipole is A = (3/2)(A2/4ir).

4.6 In the preceding problem you have found that the receiving cross section
of a dipole is independent of the length of the dipole. This is a surprising
result until one realizes that the definition of receiving cross section assumes
that the antenna is matched to its termination. Determine the matching
impedance for a short dipole as a function of its length.

4.7* The Rayleigh-Jeans law exhibits the ultraviolet catastrophe. Planck's
quantization removes the catastrophe. Derive Planck's law for the energy
density per unit volume of electromagnetic radiation at thermal equilibrium
at temperature 0.

4.8 Compare the short-circuit current fluctuations of the thermal noise of a
50 Si resistor at room temperature with the shot noise of a current Io flowing
through the resistor. At what value of Io is the latter equal to the former?

Solutions

4.1

(a) If the current in each direction is I,, then the shot noise due to the two
currents is (i2) = 4gI0B.

(b) The conductance at V = 0 is

di/dV = (qIo/k9) exp(qV/kO) = e = G .

The Nyquist formula gives (i2) = 4GkOB = 4gIoB. The two results agree.

4.3 The electromagnetic energy is kO per mode times the number of modes.
The energy per unit volume and per unit solid angle within the bandwidth
dW = 2-7rLv is

2 z7r W
41r k0x2x 2 )3

_2v vkO.

4.7 At high frequencies, when the Planck formula replaces the equipartition
theorem, the energy density per unit volume and unit solid angle becomes
(compare Prob. 4.3):

Energy density _ 2 vzdv by
unit volume x unit solid angle C3 exp(hv/kO) - 1

This law does not diverge as the frequency goes to infinity.
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Microwave and optical devices may all be described as multiports: signals are
propagated into the device through input waveguides and emerge in output
waveguides. If signal distortion is avoided, these devices are characterized as
linear multiports. Of course, even linear multiports may distort a broadband
signal by introducing frequency-dependent changes of the amplitudes and
phases of the Fourier components of the signal. A linear multiport with loss
does not only attenuate the signal, it also adds noise at thermal equilibrium.
Linear multiports with gain amplify the signal, but also add noise in the pro-
cess. In this chapter we study the basic noise properties of linear multiports.
Linear multiports are described by an appropriate response matrix, which is
a function of frequency, and a set of (Langevin) noise sources; there are N
such sources for a multiport with N ports. Since the sources are generated by
noise processes with a large number of degrees of freedom, they are usually
Gaussian, according to the central limit theorem. Then, the correlation ma-
trix of the noise sources, which is a function of frequency, is sufficient for their
specification. In Sect. 4.7 we determined the noise sources for passive multi-
ports at thermal equilibrium. Active multiports, such as amplifiers, contain
noise sources that are determined by the physics of the amplifying process.

We shall start with the derivation of the characteristic noise matrix, which
determines the stationary values of the power that can be extracted from a
noisy multiport with variations in the loading of the network. We shall find
that the stationary values of the power are given by the eigenvalues of a
characteristic noise matrix. This thought experiment establishes a universal
measure of "noisiness" of a network, which also underlies the noise perfor-
mance of an active network used as an amplifier. Then we show how the
characteristic noise matrix transforms from one network description to an-
other network description. We show that its eigenvalues are invariant under
such transformations. Finally, we express the characteristic noise matrix in
the scattering-matrix notation, the notation most useful in optical systems
terminology. The characteristic noise matrices of different matrix formula-
tions relate to different thought experiments performed on the network. In
the transfer matrix formulation, the characteristic noise matrix results from
optimization of the noise performance of an amplifier.
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Active two-ports are amplifiers. The purpose of signal amplification is
to provide a signal level at the amplifier output so high that any further
operations on the signal do not cause a significant deterioration of the signal-
to-noise ratio. An amplifier raises the signal power level, at the expense of
a decrease in signal-to-noise ratio. Clearly, the objective of good amplifier
design is to achieve a minimum deterioration of the signal-to-noise ratio in
the amplifying process.

In order to characterize the noise performance of an amplifier, one needs
a measure of noise performance. The noise figure F, defined by Friis [55], is
one such measure. It is defined by

F _ input signal-to-noise ratio
output signal to noise ratio

Since the signal-to-noise ratio deteriorates in passage through an amplifier,
the noise figure F is greater than unity. It is, further, customary to define the
noise at the input in terms of a thermal background at room temperature,
90 = 290 K. The signal level need not appear in the definition of noise figure,
since the ratio of the signal levels at output and input is simply the gain G.
One may write

noise at the output,F =
kO,,G 7

where G is the available power gain of the amplifier (to be defined more pre-
cisely below). We concentrate here on the so-called spot noise figure, defined
for bandwidths narrow enough that the amplifier characteristics do not vary
over the chosen bandwidth. The definitions of noise figure (a) in terms of the
input and output signal-to-noise ratios and (b) as applied to linear amplifiers
in terms of the amplifier output noise were adopted by the Standards Com-
mittee of the Institute of Radio Engineers in 1959 [17]. The successor Institute
of Electrical and Electronics Engineers adopted the same standard. Later, in
Chap. 9, we shall discuss the definition of noise figure for optical amplifiers
in current use and raise some important issues with regard to this usage. It
suffices to state at this point that the noise figure is an adequate measure of
amplifier noise performance only if the gain of the amplifier is large. Indeed, if
one shorted the leads of a two-port amplifier from input to output, the noise
figure of this modified arrangement would be unity, i.e. ideal. However, the
gain of this structure is unity, and hence the whole purpose of amplification
of a signal is vitiated. There must be a better way of measuring noise per-
formance, namely with a measure that also includes the gain of the amplifier
in such a way that an "amplifier" with unity gain does not appear to have
a good noise performance. Confronted with this dilemma, Prof. R. B. Adler
and the author constructed a measure of noise performance [56-61] which
remains meaningful if the amplifier gain is not large. This so-called "noise
measure" was defined by
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M= F-1
1-1/G

It is clear that this definition will not register an improvement in the noise
performance when the two-port amplifier is shorted out. Indeed, when this
happens, the "excess noise figure" F - 1 becomes zero, but so does the de-
nominator. The noise measure becomes indeterminate, zero over zero. It does
acquire a definite value if the limits are taken properly.

Further, the concept of available gain was generalized to allow for source
or amplifier output impedances with negative real parts. In this chapter we
shall address these issues in detail and arrive at unequivocal definitions of
noise performance of linear amplifiers.

5.1 Available and Exchangeable Power from a Source

A source is a one-port, described by the voltage-current relation (see Fig.
5.1)

V = ZSI + ES , (5.1)

where V is the voltage across the source, I is the current flowing into the
source, and E3 is the open-circuit voltage across the source. The available
power of the source is defined as the maximum power transferable from the
source to a load, with adjustment of the load impedance. The power flowing
into the load is

PL = (IE312)Re(ZL) (5.2)IZs+ZLI2

Here we use the notation () for an ensemble average; if the noise is stationary,
the ensemble average is equal to the time average. In the case of noise, we shall
attach a very specific meaning to (IE812): it will stand for the mean square
voltage fluctuations in a bandwidth B. Thus, the open-circuit mean square
fluctuations (IESI2) of a resistor at thermal equilibrium are (IESI2) = 4RSkOB.

+ Es-

Fig. 5.1. The equivalent circuit of a source
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The power flowing into the load is maximized when ZL = Z,,*. With this
value of the load the maximum power is realized; PL of (5.2) becomes the
so-called "available power"

P -- (IE912)
av

2(Z8 + ZS)
.

This relation assumes that the source impedance has a positive real part.
This is not always the case. The impedance of a parametric amplifier (see
Chap. 11) may have a negative real part. If the parametric amplifier is used
as the first amplifier in a cascade of amplifiers, the combination of source
and parametric amplifier may appear to the remainder of the cascade as
a source with an internal impedance that has a negative real part. If the
source impedance Zs has a negative real part, a passive load ZL = -Z9
leads to a finite amount of power for ES = 0 and an infinite amount of
power if Es # 0. In such a case one needs a generalization of the concept
of available power, the exchangeable power. It is defined as the extremum of
the power exchanged between source and load. For a source with a positive
real part of its impedance the exchangeable power is the available power as
discussed above; when the source impedance has a negative real part, it is
the minimum (the extremum of the) power fed to the load. We shall use this
extended definition of power from a source henceforth, so as to allow for the
cascading of structures that may result in source impedances with negative
real part:

P = (IE312)
ex

2(Z3+Zs)

Note that the exchangeable power is negative when the real part of the source
impedance is negative. Figure 5.2 shows the dependence of the power ex-
changed between source and load for the cases of a positive and a negative
source resistance. The extrema occur for positive and negative load resis-
tances, respectively.

5.2 The Stationary Values of the Power Delivered
by a Noisy Multiport and the Characteristic
Noise Matrix

In the preceding section we have studied the available power from a source of
impedance Zs and internal noise source E. When the source impedance had
a negative real part, we generalized the concept of available power to that of
exchangeable power, the value of the power that is stationary with respect to
variation of the load impedance. In this section we generalize the concept of
exchangeable power to multiports. Since the network has many terminals, one
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Fig. 5.2. The power flowing into the source R. = Re(Z8) as a function of RL

must be specific as to which terminal is being explored. However, varying the
load on one terminal pair alone, leaving all other terminals open-circuited,
does not allow for sufficient adjustment. For this reason, we analyze the more
general case in which the network is embedded into an arbitrary lossless 2N-
port first, and then the load is varied on one of the terminals. This allows
for a sufficiently wide range of adjustment. We shall find that the stationary
values of the power are given by the eigenvalues of the "characteristic noise
matrix" of the network.

At any particular frequency w, a noisy multiport can be described by its
impedance matrix expressing the terminal voltages in terms of the terminal
currents (see Fig. 5.3):

V = ZI + E . (5.5)

For a multiport of Nth order, the impedance matrix Z is a square matrix
of Nth rank. The noise sources are arranged in a column vector E. They
are specified in terms of the correlation matrix (EEt), whose ij element is
(EiEj*). As defined, the noise sources appear as voltage generators in series
at the terminals of the multiport as shown in Fig. 5.3. We may now ask
for the available or, more generally, the exchangeable power from one of the
terminals of the N-port. With all ports open-circuited except the ith, the
exchangeable power from the ith port is

Pe,a __ 1 (EiE,) __ 1 t(EEt) (5.6)2Zii+Zy%

where the column matrix consists of all zeros except for the ith row, which
is a one (1;j = 0, j i; Si = 1). Equation (5.6) gives the stationary values of
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Fig. 5.3. Equivalent circuit of linear noisy N-port

the power with variation of the load on the ith terminal, but with no other
adjustment of the network. More general is the case when the network of in-
terest is embedded in a lossless, noise-free 2N-terminal-pair network resulting
in a new N-port, whose ith port is terminated in the complex conjugate of
the open-circuit impedance of this new port. We shall now turn to the theory
of embedding of an N-port in a lossless 2N-port.

The impedance matrix of the lossless 2N-port is subdivided into four
impedance matrices of Nth rank (see Fig. 5.4):

Zaa Zab
ZT Zba Zbb

with the voltage-current relations

Va = Zaala + Zablb , (5.8)

Vb = Zbala + Zbblb . (5.9)

Since the embedding network is lossless, we must have

It(ZT + ZT)I = 0 , (5.10)

for an arbitrary current excitation I, and thus

ZT+ZT=0 or Zaa + Zt
[Zba + Za

Zab
a]

0. (5.11)
tab Zbb +

+ ZZt

bb

The currents I of the original N-port are equal and opposite to the cur-
rents Ia fed into the embedding network; the voltages V are equal to the
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Fig. 5.4. A lossless 2N-port with an embedded N-port

voltages Va across the terminals of the embedding network. We obtain from
(5.5) and (5.8)

I. = -(Z + Zaa)-1ZabIb + (Z + &a)-'E . (5.12)

Using (5.9), the new network with terminal voltages Vb and terminal current
Ib has the impedance matrix Z' and Langevin sources E':

Vb = Z'Ib + E' (5.13)

with

Z' -Zba(Z + Zaa)_1Zab + Zbb (5.14)

and

E' = Zba(Z + Z,,)-'E . (5.15)

The exchangeable power contains the matrices (EEt) and Z + Zt, in the
numerator and denominator. Hence it is of interest to determine the trans-
formation of these two matrices, using (5.14) and (5.15). Taking into account
the condition (5.11) for losslessness of the embedding network, we obtain

Z' + Z't = -Zba(Z + Zaa)-1 Zab + Zbb + Zbb

-7'tab(Zt + Zaa)-1Z6a

= Zba[(Z + Zaa)-1 + (Zt + Zaa)-1lZba
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This expression can be transformed further:

Z' + Zt = Zba(Z 7aa)-' [(Zt + Zaa) + (Z + Zaa)

(Zt + Zaa)-1Zba

= Dt(Z + Zt)D

(5.16)

with

Dt = Zba(Z + Zaa)-' (5.17)

The transformation of the matrix Z + Zt is a collinear transformation. The
transformation of the noise correlation matrix follows from (5.15):

(E'E't) = Dt(EEt)D. (5.18)

The same collinear transformation law is obeyed by both the correlation
matrix and the impedance matrix plus its Hermitian conjugate. Note that
both Z + Zt and (EEf) are Hermitian matrices and that (EEt) is positive
definite. It is possible to diagonalize both matrices with one and the same
collinear transformation. To show this, suppose first that the positive definite
Hermitian matrix EEt is diagonalized by the unitary matrix U, a well-
known operation. On the diagonal of the diagonalized matrix appear the
real eigenvalues of the matrix. Next, we normalize the resulting matrix by
a diagonal, real, normalizing matrix N, obtaining an identity matrix as the
result:

NtUt(EEt)UN = 1.
Next, consider the matrix Z+Zt. We perform the same operations on this

matrix and obtain a new matrix NtUt(Z+Zt)UN, which, of course, is not
diagonal, in general, but is still Hermitian. Now we diagonalize the matrix
with the unitary matrix V, so that VtNtUt(Z + Zt)UNV is diagonal.
Since we are looking for simultaneous diagonalization of Z + Zt and (EEt),
we must pre- and post-multiply NtUt(EEt)UN by Vt and V. But since
the matrix N1Ut(EEt)UN is the identity matrix, the operation leaves it
unchanged. This proves the theorem that two Hermitian matrices can be
diagonalized simultaneously with a collinear transformation if one of them is
positive definite.

We can now ask for the exchangeable power from the ith terminal pair of
the new network. It is

1 t(E'E't)Pei=- Z' Z't2 t
(5 19).

)[ +

When we use the transformation laws (5.16) and (5.18) to express the primed
quantities in terms of the unprimed, original impedance and noise correlation
matrices, we find
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1 xt(EEt)x
P"'

_
2 xt[Z + Zt]x '

with

(5.20)

xt = tZba(Z + Z..a) = tDt . (5.21)

Suppose next that we pick D so as to diagonalize simultaneously both
(EEt) and 2(Z + Zt), with (EEt) transformed into the identity matrix.
Denote the diagonal elements of the transformed matrix 2(Z'+Z't) by 1/Ai.
We then obtain for (5.20)

I S

ISiI2 (5.22)P C i .

e

It is obvious that Ai is an extension of the concept of exchangeable power.
Further, Ai is one of the eigenvalues of the matrix

2(Z + Zt)-1(EEt) ,

which has undergone the similarity transformation

-1(Z + Zt)-1(EEt)D ,D-12

which rendered it diagonal. The same result can be obtained by an alternative
route. Returning to (5.20), we note that the exchangeable power is the ratio of
two scalars that are constructed from two Hermitian matrices A =

a
(EEt)

and B = Z + Zt by projection via the column matrix x. The extrema of
this expression can be found by determining the stationary values of xtBx
under the constraint xtAx = constant. With the Lagrange multiplier A, and
the recognition that xtBx and xtAx can be considered functions of either
the xi or the x!, we find

-x x = 0A-( :
a

i ij jx x3 A
a i

or

Ax-ABx=0. (5.23)

The values of A are determined from the determinantal equation

det(A - AB) = 0 = det(B-1A - Al) . (5.24)

The eigenvalues of A fix the extrema of the exchangeable power from terminal
i. They are the eigenvalues of the matrix

B-1A =
21 (Z + Zt)-1(EEt) . (5.25)
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This matrix, or rather its negative, has been dubbed the "characteristic noise
matrix", NZ [61]. The choice of sign is motivated by the fact that the positive
eigenvalues of the characteristic noise matrix so defined determine amplifier
noise performance, as shown further on. This matrix is given by

Nz 2 (Z + Zt)-' (EEt) . (5.26)

One feature of the characteristic noise matrix, when applied to a pas-
sive network at thermal equilibrium can be discerned right away. A passive
network has open-circuit impedances with positive real parts only. At ther-
mal equilibrium, the available power delivered to the matched load must be
kOB. Thus all eigenvalues of the characteristic noise matrix must be equal to
-kOB. We have

Nz = -2(Z+ Zt)-1(EEt)- -kOB1 , (5.27)

where 1 is the identity matrix.
A few words about the sign of the eigenvalues of (5.26). The correlation

matrix (EEt) is positive definite (or semidefinite in some limits). The matrix
(Z+Zt)-1 is positive definite if the network is passive, negative definite if it
is totally active so that it cannot absorb power under any circumstances, or
indefinite if the network can both generate and absorb power. The definiteness
of a product of two matrices one of which is positive definite is that of the
other matrix. Hence, the eigenvalues of (5.26) are all negative if the network
is passive, all positive if the network is totally active, and both positive and
negative if the network can both generate and absorb power.

5.3 The Characteristic Noise Matrix
in the Admittance Representation
Applied to a Field Effect Transistor

An analogous derivation can be carried out in the admittance matrix repre-
sentation. The exchangeable power of a one-port is now

Pex = (IJs12) (5.28)
2(Y, + Y9) '

where Ys is the source admittance and Js is the noise source. The gener-
alization to a multiport, with all terminals short-circuited except the ith,
is

P
_ 1 t(JJt)

(5.29)
e,i 2 t(Y +Yt)C
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where the current-voltage relationship is

I=YV+J. (5.30)

The embedding proceeds completely analogously. We find that the extrema of
the exchangeable power are the eigenvalues of the characteristic noise matrix

NY = -2(Y+Yt)-1(JJt) . (5.31)

Fig. 5.5. Small-signal equivalent circuit of junction field effect transitor (JFET)

It is of interest to look at the simple example of a two-port amplifier.
Figure 5.5 shows the small-signal equivalent circuit of a field effect transistor.
The linearized equivalent circuit consists of a gate conductance gg, a gate
capacitance cg, a drain conductance gd, and a voltage-dependent voltage
generator gmeg. The noise is represented by the two noise generators ig and id.
Because of the linearized form of the representation we use lower-case letters
for all symbols. The current-voltage relations for this equivalent circuit are

i1 = (gg - iwcg)vl + ig ,

i2 = gmvl + gdv2 + id .

The matrix 2 (Y + Yt) is

2(Y+Yt) [gm/29M/2]

This matrix is not positive definite. Indeed, the determinant

(let f2 1 Y + Yt
1

gm
(

) = 9ggd - 4

is

(5.32)

(5.33)

(5.34)

(5.35)

When gm /4 > gggd the determinant is negative. This means that the network
is capable of delivering net power, acting as an amplifier.
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The inverse of the matrix 2 (Y + Yt) is

1

2(Y+Yt)l = 1 9d -9m/2
) 999d - q9m -9m/2 99

The noise current source correlation function is

(1i912) (292d)
(JJt) =

(igid) (1id12)

and the characteristic noise matrix becomes

1 1N Y_
2gm/4 - 999d [-29m(12912) +99(igid) -29m(igi) +99(lid 12) 1

(5.38)

The eigenvalues of the characteristic noise matrix are

l

2 9m/41 999d

[gdWg12
) + 99(lid 12) - 9mRe(iyid))

± [1 (9d(I2912) +9g(lid 12) - 9mRe(i9*id))2

l
1/2

+(9m/4 - 9d99)((129I2)(lidI2) - I (igid)I2)J

(5.39)

When the system has gain, the two eigenvalues are of opposite sign. With
proper passive loading, the two-port can be made to oscillate in the absence
of the internal sources and deliver an infinite amount of power in the presence
of the internal sources. From the preceding analysis we know that the eigen-
values determine the exchangeable power from the two-port. The one with
the negative sign gives the minimum power delivered by the network; the one
with the positive sign gives the minimum power delivered to the two-port
by active (negative-conductance) terminations. We shall later prove, in Sect.
5.7, that the positive eigenvalue determines the optimum noise measure of
the amplifier.

5.4 Transformations of the Characteristic Noise Matrix

In Sect. 5.2, we evaluated the exchangeable power obtainable from a noisy
N-port when the N-port is first embedded in a lossless network and then
the ith port of the resulting network is terminated in a load, while all other
ports are left open-circuited. This procedure provided a sufficient number

(5.36)

(5.37)

9d (129I2) - 29m(i9*id) 9d(i92d) - 29m(Iidl2)
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of adjustable parameters for an arbitrary adjustment of the loading of the
N-port. We arrived at a characteristic noise matrix of the original N-port
in this manner. The same procedure can now be exploited to determine the
change of the characteristic noise matrix following a lossless embedding. The
original network has the following characteristic noise matrix (5.23):

Nz = - 2 (Z + Zt)-1(EEt) . (5.40)

A lossless embedding transforms (EEt) and Z + Zt according to (5.16)
and (5.18). Accordingly, the transformation of the characteristic noise matrix
is

N' = D-'NZD . (5.41)

The transformation is a similarity transformation, which leaves the eigenval-
ues of the characteristic noise matrix invariant! This finding will be exploited
later to show that the optimum noise performance achievable with an ampli-
fier is invariant under a lossless embedding, feedback being one special case
of such an embedding.

Different forms of the characteristic noise matrix result from different ma-
trix descriptions of a multiport, the impedance matrix description and the
scattering-matrix description being two such examples. We shall show that
these different forms of the characteristic noise matrix are also related by
similarity transformations. Since the most important attribute of the char-
acteristic noise matrix is its eigenvalues, and eigenvalues are invariant under
similarity transformations, it is expedient to construct the characteristic noise
matrix within the formalism used.

Suppose that the impedance matrix description of the network

V = ZI + E

is recast with new variables into a new formulation

v=Tu+S,

(5.42)

(5.43)

where the new variables are related to the voltage-current variables by the

transformation

RIU]=[I, (5.44)

We shall now show that a characteristic noise matrix that is related to the
characteristic noise matrix (5.40) by a similarity transformation emerges nat-
urally in the new description of the network. To accomplish this most econom-
ically, we recast the terminal relations (5.42) and (5.43) into matrix format,
introducing the column matrices (5.44), which are of twice the rank of either
V or I. With these, we may rewrite the terminal relations (5.42) and (5.43)



170 5. Linear Noisy Multiports

[1 -Z] [j] =E,

[1 -T]IV]=B.

Now we introduce the transformation (5.44) into (5.45)

[1 - Z]RR-1 [] = [1 Z]R [ ]

[Rll-ZR21 R12-ZR22] {v} =E.

Multiplication of (5.47) by the matrix

M = (R11 - ZR21)-1

puts (5.47) into the form of (5.46), where

[1 - T] = M[1 - Z]R,

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

S = ME. (5.50)

This completes the transformation of the impedance matrix Z into the
response matrix T, and the source vector E into the source vector S.

Next we consider the representation of the power P flowing into the net-
work in the absence of internal sources. Each matrix representation expresses
the power in terms of the excitation variables via a specific matrix Q. Thus,
consider the impedance representation, for which we write

P = 2 (VtI + ItV) _ Qz VD
(5.51)

where Qz is the matrix

Qz= 1 0p1

Analogously, in the T representation, the power P is written

f

U
QTLv]I .

(5.52)

(5.53)

Since the power must be equal in the two descriptions, for all possible exci-
tations, we must have
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P= <[v] QT [v] = <[I]tQz

({v]tRtQR{v])

and, thus,QT

= RtQzR.

r»
(5.54)

(5.55)

This is the law of transformation for the power matrix QT. Thus far, we
have determined the transformations between two different matrix represen-
tations of a network involving the network matrices, the internal sources,
and the transformation of the power flowing into the network in the absence
of internal sources. Next we reformulate the characteristic noise matrix in
the impedance formulation and determine its transformation into the T rep-
resentation. The characteristic noise matrix (5.26), recast in terms of the
reformulation (5.45), is seen to be

Nz = {[1 - Z]QZ1 I-zd (EEt) . (5.56)

If we introduce the transformations (5.49) and (5.50) between the imped-
ance matrix formulation and the T matrix formulation into (5.56) we find

{M_1[1Nz -T]R-1Q-'Rt-1 L-Tt] Mt-11-1

xM-1(66t)Mt-1

[t]}1otMt-1.= Mt { [1 - T]Q1

We have derived a new characteristic noise matrix of the same generic form
as that of Nz in (5.56), namely

NT = {[l -T]QT1 [_] }-1 (Sot) , (5.58)

and this matrix is related to Nz by a similarity transformation.
We have studied the transformations among different matrix formulations

of the same network. We have found that a new definition of the characteristic
noise matrix emerges in every formulation. The different characteristic noise
matrices are related by similarity transformations and thus possess the same
eigenvalues. In each formulation, the eigenvalues of the characteristic noise
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matrix are equal to the stationary values of the power exchanged between the
network and its terminations in a thought experiment in which the terminal
conditions are varied. The stationary values of the exchangeable power in
a thought experiment in which all terminals but one are open-circuited are
given by the characteristic noise matrix in the impedance representation. A
thought experiment that determines the stationary values of the exchangeable
power when all but one terminal are short-circuited leads to the character-
istic noise matrix in the admittance formulation. Since the two matrices are
related by a similarity transformation, the stationary values in these two dif-
ferent thought experiments are, in fact, the same. In the next section we shall
show that the characteristic noise matrix in the scattering-matrix represen-
tation gives the stationary values of the exchangeable power when all but one
termination are matched.

5.5 Simplified Generic Forms
of the Characteristic Noise Matrix

The matrix algebra in the preceding section was quite general, but it had
to deal with manipulations of matrices of rank 2N, a rank twice that of the
network at hand. The expression for the characteristic noise matrix in any
formalism can be simplified in many important cases, as indeed it was in
the impedance matrix formulation, when we first encountered it by writing
it in terms of matrices of rank N. For this purpose, two cases have to be
distinguished.

(a) All ports of the network are equivalent. The response is in terms of input
excitation variables (e.g. currents), defined at all ports in the same form,
producing output excitation variables (e.g. voltages). Take, for example,
the impedance description. We then have for Qz

QZ = 2 [o it1
(5.59)

Another example is the admittance description. It has the same power
matrix,

QY=2[0o (5.60)

If we use this definition and the fact that T = Y for the admittance
description, where

I=YV+J, (5.61)

and J is a column matrix composed of noise current generators, we find
for the characteristic noise matrix in the admittance formulation
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Ny = -2(Y+Yt)-1(JJt) . (5.62)

If we take the scattering matrix formulation as an example (compare
Appendix A.6),

b = Sa + s , (5.63)

then

Qs= [ 10 , (5.64)
0 1

and the characteristic noise matrix with T = S becomes

Ns = (SSt - 1)-1(sst) . (5.65)

(b) The network has an even number of ports, half of which are designated
as input ports and half as output ports. The excitation variables at the
output ports are expressed in terms of the excitation variables at the
input ports. The two-port of Fig. 5.6 is an example. Port (2) is the "out-
put" port, port (1) is the "input" port. The matrix T is the "transfer"
or ABCD matrix

[I1] -
[C

D]
[12]

+
[E1]

(5.66)

Note the direction of positive current as defined in Fig. 5.6. In this case,
the power matrix is of the form

,QT = LPT
-0

0 PT]

with

PT (01]
2 10

and the characteristic noise matrix assumes the form

(5.67)

(5.68)

NT = (PT1- TPT1Tt)-1 (66t) , (5.69)

with
T= (AB]

CD
If voltages and currents are not natural excitation variables, as is the

case in the analysis of optical amplifiers, wave amplitudes can be used
instead. If this is done for the transfer matrix formalism as represented
by (5.66) in terms of voltages and currents, we obtain
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Fig. 5.6. The equivalent circuit of the two-port of (5.79)
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The power matrix is

[ PT 0 1
QT = 0 PT I

with
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P =

12

0

V2

0

(5.70)

(5.71)

In this formalism, the characteristic noise matrix is of the same form as in
(5.69), the only change being the new interpretations of PT, the transfer
matrix, and the noise source column matrix.

The characteristic noise matrix arises naturally in the scattering-matrix
formulation when the question is asked about the stationary values of the
power delivered to a load connected to the ith port, with all other ports
matched, i.e. a3 = 0 for j i. We proceed to prove this assertion. With all
ports except the ith, matched, the equation of the ith port is

bi = Siiai + si . (5.72)

The available power or, more generally, the exchangeable power, is realized
when the termination impedance of the ith port is the complex conjugate
of the internal impedance presented by the N-port. This means that the
reflection coefficient of the termination is the complex conjugate of Sii:

reflection coefficient =
a'

= S i .
bi

The power flowing into the load is

(5.73)

I2 = (ISiI2)12 - I= IbP (5 74)aiex,i i 1-ISi,I2
.
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This can also be written in matrix form, with the column vector such
that 6i =0for j i, and6;=1:

Pey'i _ t (1 - SSt ) . (5.75)

We can again consider a lossless embedding of the network that transforms
the source correlation matrix and the matrix in the denominator. Lossless
embeddings have been studied in the impedance formulation. We do not
need to rederive the transformations in the scattering-matrix formulation,
since we may transform both matrices into the impedance form. A lossless
embedding transforms the resulting matrices by a similarity transformation.
Transforming back into the scattering-matrix formulation, we obtain

xt(sst)x
Pex,i =

with- SSt)x with x = Mt-1DMt (5.76)

Now the column matrix x is arbitrarily adjustable and can be varied
for extremization. The eigenvalues of the characteristic noise matrix NS =
(SSf - 1)-1(sst) now yield the extrema of the exchangeable power at the
ith port, with all other ports matched.

The characteristic noise matrix in the transfer matrix formalism (5.66) is
the basis of a thought experiment in which the so-called "noise measure" is
extremized with adjustment of the source and load impedances, as we shall
show in the next section.

5.6 Noise Measure of an Amplifier

Within a narrow frequency band, a linear amplifier is described completely by
its scattering matrix and the correlation matrix of its noise sources. Ampli-
fiers are not always connected to transmission lines in which the definition of
incident and reflected waves is unequivocal. Hence, the scattering matrix for-
malism is not best suited for the study of amplifier noise performance at both
low frequencies and microwave frequencies. The voltage-current description
is more appropriate for this purpose. We shall start with this formalism and
express only the final results in the scattering matrix terminology, which is
natural for the description of optical amplifiers, for which the voltage-current
description lacks specificity (equivalent circuits for optical structures are not
unique).

5.6.1 Exchangeable Power

To facilitate the evaluation of the available gain, or the more general concept
of exchangeable gain, it is expedient to derive the available or exchangeable

t(sst)
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power by matrix manipulation. The equation for the source connected to the
amplifier (see Fig. 5.6) can be written

xtv = E9 with X= [z and v
Vi

11L 3

The exchangeable power is

(1 E312)es =P X'PTiX

where
1[011PT2ILI0

is the power matrix as defined earlier in (5.71).

5.6.2 Noise Figure

(5.77)

(5.78)

A matrix description best suited for the analysis of amplifiers in cascade is
the "transfer" or ABCD matrix expressing the input voltage and current in
terms of the output voltage and current (see Fig. 5.6):

[Ii] - [C D] [ 22] + [J)
or, in abbreviated matrix notation,

v=Tu+5
with

V

= [Iii] ,

(5.79)

(5.80)

(5.81)
[E]

T=[AB][CD

Here E and J are the internal voltage and current noise sources at the
input of the amplifier as shown in Fig. 5.6. In this representation, the noise
figure is already completely determined by E and J; no details of the ABCD
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transfer matrix enter into its evaluation. Indeed, after incorporation of the
noise sources in front of the amplifier into the voltage generators of the signal
and the noise of the input source impedance, the signal-to-noise ratio does not
change when the signal and added noise pass through the noise-free remainder
of the equivalent circuit [62] (see Fig. 5.6). We compute the noise figure as
defined in the introduction to this chapter:

F _ input signal-to-noise ratio (5.82)
output signal-to-noise ratio

We may evaluate the noise figure as the ratio of the mean square noise voltage
at the primed terminal pair of Fig. 5.6, divided by the mean square noise
voltage in the absence of the amplifier noise sources; the input source is at
thermal equilibrium at temperature Bo:

(IE8I2) + (IE + Z8JI2) (E + ZSJI2)- 1 + (5.83)F
(IE,512)

-
4Re(Z9)kO0B

It is helpful to cast the noise figure expression into matrix notation. Using
the column vectors x and S as defined in (5.77) and (5.81), the excess noise
figure can be written in the form

xt (SSt)x
F - 1 = kO0BxtPT1x

(5.84)

Note that the excess noise figure is equal to the exchangeable power at
the input of the amplifier with the noise sources of the amplifier assigned to
the source, divided by kO0B. If the source impedance has a positive real part,
as it always does at the input to the first amplifier in a cascade, then the
excess noise figure is equal to the available power of the noise sources of the
amplifier assigned to the source, divided by kBoB:

Pav,1 (5.85)F-1=
kBoB

5.6.3 Exchangeable Power Gain

Next we determine the exchangeable power gain, defined as the ratio of output
exchangeable power to input exchangeable power of an amplifier connected
to an input source impedance Zs and a signal voltage source Es with no
internal noise sources (see Fig. 5.7). The exchangeable power of the source is
given by (compare (5.78))

Pex,1 =
(IE812 ) a (5.86)

xtPT x

where
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Fig. 5.7. The equivalent input noise source

x =
L

Z*
J

. (5.87)

It is instructive to note that the expression for the exchangeable power
(5.86) is constructed from the power matrix PT and the components of the
voltage-current relation of the source

xtv=E3,
an expression that, written out explicitly, reads

V1+ZsI1=E3.

(5.88)

(5.89)

The exchangeable power at the amplifier output can be constructed similarly,
if we note that (5.79), written in terms of the output voltage and current of
the amplifier, assumes the form

xtTu = Es

or, written out explicitly,

(A + Z3C)V2 + (B + Z3D)I2 = Es .

(5.90)

(5.91)

We cast (5.91) into the form of (5.89) by multiplying it by a = 1/(A+Z8C),
obtaining the expression

V2 + (B + Z8D)
I2 =

E3
(5.92)(A+ZC) A+ZC

or, written more succinctly,

axtTu = aE9. (5.93)

The exchangeable power at the amplifier output is thus, comparing (5.89),
(5.92), and (5.93),

1a12(1E312)
(IEsl2)

PeX,z = axtTPT'Ttxa* xtTPT1Ttx
(5.94)

The exchangeable power gain is thus
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G
Pex 2 xtPT1x

(5.95)Pex,l xtTPT1Ttx

The reader will remember that the exchangeable gain reduces to the avail-
able power gain when the output impedance of the amplifier connected to the
source has a positive real part. This is the desirable situation, since ampli-
fiers with output impedances of negative real part are prone to oscillate. In
fact, whenever a case arises in which the output impedance has a negative
real part, the circuit is usually modified via a circulator, so that the system
looks matched as seen from the output port (see Fig. 5.8). In this case the
exchangeable gain reduces to the available gain.

circulator

match

Fig. 5.8. Use of circulator to eliminate effect of negative output resistance of
amplifier

5.6.4 The Noise Measure and Its Optimum Value

We are now ready to evaluate the noise measure

M= 1F
1/G , (5.96)

with the gain G interpreted as the exchangeable gain. Combining (5.84) and
(5.95) we find

M_ F-1 _ xt(SSt)x (5.97)

1 - 1/G kO0Bxt(PT' -TPT'Tt)x

Note that the noise measure becomes equal to the excess noise figure F - 1
when the exchangeable gain is large. Further, note that the noise measure is
negative when the gain is less than unity. Hence, we are only interested in
positive values of an amplifier noise measure.

The noise measure is the ratio of two scalars that are constructed from
two Hermitian matrices A = (SSt) and B = PT1- TPT'Tt by projection
via the column matrix x (see Sect. 5.2). The eigenvalues A fix the extrema of
the noise measure. They are the eigenvalues of the matrix
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NT = B-1A = (PT-'- TPT1Tt)-l(oot) , (5.98)

which is the characteristic noise matrix (5.69) in the transfer matrix notation.
We have arrived at a new and interesting insight. We have studied earlier
the transformation of the characteristic noise matrix as the consequence of
a change in the network description. The eigenvalues of the characteristic
noise matrix remained invariant under such a transformation. We showed
that every new form of the characteristic noise matrix is associated with a
thought experiment of exchangeable-power extremization via changes of the
network loading. In the impedance matrix description, this corresponded to
finding the extremum of the power delivered to a load on one terminal pair,
with all other terminals open-circuited, after embedding of the network in
a lossless network. In the scattering-matrix notation, it was the extremum
of the power into a conjugately matched load at one terminal pair, with all
other pairs terminated in matched transmission lines so that no waves were
reflected from them. In the case of the ABCD matrix of a two-port, we found
that the eigenvalues of the characteristic noise matrix give the extremum of
the noise measure of the two-port.

A characteristic noise matrix of second rank has two eigenvalues. These
can be positive as well as negative. As pointed out earlier, only positive
eigenvalues are of interest, since they are associated with gain. The smallest
positive eigenvalue determines the lowest achievable noise measure, or ex-
cess noise figure at large gain. We have shown that the characteristic noise
matrix of a passive network has only negative eigenvalues, a totally active
network has only positive eigenvalues, and one that can both absorb and gen-
erate power has both negative and positive eigenvalues. The most common
amplifiers are both active and passive for good reasons.

(a) Amplification is only possible if the network is capable of generating
power.

(b) To prevent undesirable feedback effects due to reflections of the load at
the output port of the amplifier it is desirable that the amplifier appear
matched at its output. This is only possible if there is absorption of a
wave incident upon the output port.

The range of values of the noise measure is illustrated in Fig. 5.9. The
eigenvalues determine the extrema; the noise measure ranges from the pos-
itive eigenvalue to plus infinity and up from minus infinity to the negative
eigenvalue, when the characteristic noise matrix is indefinite, and between
the two positive eigenvalues when the characteristic noise matrix is positive
definite (as mentioned earlier, the less common case).

Lossless embeddings leave the eigenvalues of the matrix (5.98) invariant
as well. A special case of a lossless embedding is feedback produced by con-
necting reactive impedances between the input and output of an amplifier
two-port. Thus the noise measure achievable with such feedback is subject to
the same limits.
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PT -TPTTt
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Fig. 5.9. Range of values of noise measure

5.7 The Noise Measure in Terms of Incident
and Reflected Waves

In Sect. 5.4 we studied the transformation of the characteristic noise ma-
trix from one formalism to another and showed that the characteristic noise
matrices that emerge in different formalisms are related by similarity trans-
formations. We also saw that each formalism is associated with a different
thought experiment of extremization. Thus, one may ask for the extrem-
ization of the noise measure with respect to the source reflection coefficient,
and write the resulting noise measure in terms of incident and reflected waves
rather than terminal voltages and currents. This kind of description is partic-
ularly appropriate in the discussion of the noise measure of optical amplifiers,
since their response is expressed naturally in terms of incident and reflected
waves. In this section, we shall study this transformation in detail. In the
next section we shall use it to simplify the algebra incurred when analyzing
the noise measure of a field effect transistor.

The description of a two-port in the transfer matrix formulation is given
by (5.80) and the noise measure was presented in (5.97), as repeated below:

M
xt(88t)x

(5.99)
kO0Bxt(PT' - TPT'Tt)x
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with the vector (column matrix) x given in terms of the source impedance
Z9:

X= [Z9]
.

When the optimum noise measure is achieved, x is
eigenvalue equation

Zs

NTx=Ax, (5.101)

where A is the least positive eigenvalue of the characteristic noise matrix NT.
Now, suppose we use wave variables instead of voltage-current variables to
describe the excitation of the two-port. In the wave formalism, the source
generator and the two-port noise generators become wave generators. Indeed,
the equation of the source in the wave formalism is

a+rb=s. (5.102)

The equivalent circuit with the wave generator is shown in Fig. 5.10a. The
reader will recall that a wave generator is a combination of a voltage generator
in series and a current generator in parallel. A signal wave passing through the
wave generator is unaffected. The transformation from the voltage-current
variables to the wave variables is based on the following two relations; the
transformation from V, I to a, b:

a = 2 ( YoV + ZoI), b = 2 ( YoV - ZoI) (5.103)

a
f- b

(a)

Ir-

(5.100)

an eigenvector of the

0

Zo
(b)

Fig. 5.10. Equivalent source circuits: (a) the wave representation; (b) the voltage-
current representation

The relation between the voltage source and wave source is

_ Yo Es

1 + Z3/Z0
(5.104)

The relation between the reflection coefficient and impedance is
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_ 1-Z9/Zo
I's

1 + Z.,/Z. (5.105)

Again, the description in the wave formalism can be written concisely:

xtv=s, where x=
L A* ]

and v= [a]
b

(5.106)

The equation for the noisy two-port has the standard form

a, Taa Tba a2

ii [Tab Tbb] [b2] + L,Yb][b

v=Tu+S with v= 1ab1], u =
[bb]

, and

or

where rya and ryb are noise wave generators (see Fig. 5.10b).

5.7.1 The Exchangeable Power Gain

The exchangeable power of the source can be evaluated directly from (5.78)
by substituting (5.104) and (5.105):

Pex,l = (Is12) _ (Is12) (5.108)
1 - II',,sl2 xfPTlx

This expression looks very much like (5.78), with

PT = (5.109)

The exchangeable output power in the general matrix notation is of the same
form as in (5.94):

Pex,2 =
(1812)

xtTPTlTtx
.

Finally, we obtain for the exchangeable power gain G

xtP-lx

(5.110)

G T (5.111)xtTPT1Ttx

This expression is identical in form to (5.95), except for the fact that the
matrices have all been redefined.



184 5. Linear Noisy Multiports

5.7.2 Excess Noise Figure

The reader will have sensed the drift of the derivation. If one asks for the
excess noise figure, one again finds complete parallelism with the derivation in
Sect. 5.6. The noise is now described by two wave generators as shown in Fig.
5.11. The evaluation of the noise figure can ignore the presence of the noise-
free structure following the wave generators. We note that the equivalent
noise source at port (1) due to the internal noise of the amplifer is

7a + rs7b = xt5. (5.112)

The exchangeable power of this source is

Yb Ya

T

F---C

- a2
--- b2

Fig. 5.11. The noisy two-port in the wave representation

xt (55t )x
Pex,noise = xtP-1X

and the noise measure is

F - 1 _ xt(55t)x
1-11G kO0Bxt(PT1 -TPT1Tt)x

.

(5.113)

(5.114)

The noise measure has the same appearance as in the voltage-current formu-
lation. The optimum noise measure is given by the lowest positive eigenvalue
of the characteristic noise matrix

NT = (PT1 -TPT'T')-1(58t) . (5.115)

The fact that we obtained the same formal expressions for the noise measure
using the wave formalism as with the voltage-current formalism may ap-
pear surprising. Have we not noted that every new formulation of the matrix
equations for the linear multiport corresponds to the extremization of a dif-
ferent thought experiment? In the current-voltage formalism the termination
of one of the ports is varied while all the other ports remain open-circuited.
In the wave formalism, as one of the terminations is varied, all other ports
are matched. The reason why the two formalisms do not differ in the case of
the noise measure rests on the fact that the noise measure is independent of
the termination of the output port.
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One issue we have not addressed thus far is the question of the optimum
source impedance for minimization of the noise measure. In the wave for-
malism one asks for the optimum reflection coefficient of the source. This is
obtained as follows. The optimization is achieved when the following equation
holds:

N21x1 + N22x2 = Axe , (5.116)

where we have dropped the subscript T on the characteristic noise matrix N.
The eigenvector x involves the reflection coefficient of the source for optimum
noise performance (compare (5.106)). From (5.106) and (5.116) we find

x2 N21

X1 A-N22

The positive eigenvalue is given by

A
Nil

+N22 +
2

and thus

2
(Ni1 - N221

2 J

s = N21
(5.119)r

(Nil - N22)/2 + [(N11 - N22)/2]2 + N12N21
.

This termination is physically realizable if one finds that JI'SI < 1. If this
condition is not met, then the optimization cannot be achieved with a passive
source. In this case, in order to achieve optimization a lossless embedding of
the two-port may be required.

5.8 Realization of Optimum Noise Performance

A simple example should serve to illustrate the general theory presented
thus far. In particular, it will be shown how the optimum noise performance
is achieved in one particular case. We shall look at the optimum noise per-
formance of a junction field effect transistor (JFET) operating at microwave
frequencies, with the equivalent circuit shown in Fig. 5.5 [63]. We ask the
question as to how the optimum noise performance is realized: can it be
achieved simply by choice of a proper source impedance or does the opti-
mization entail a lossless embedding?

The answer to this question is best obtained if the network of Fig. 5.5
is properly normalized. We first connect an inductive admittance in parallel
to make the input admittance purely real. This additional admittance may
be thought to be associated with the source admittance. Next we connect
transformers to the input and output to transform the admittances Y11 and

(5.117)

+ N12N21 (5.118),
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Fig. 5.12. The equivalent circuit of the JFET with transformers and transmission
lines

Y22, which are now real, to be equal to the characteristic admittances of two
transmission lines connected to the input and output (see Fig. 5.12). This
is done in preparation for a wave-excitation formulation of the problem, a
formulation that simplifies the ensuing algebra. The equations of the network
become

Y. .

i1 = Yov1 + -2g ,
99

i2 = 9-m. Yovt + Yov2 +
999d

YoZ.d

9d

(5.120)

(5.121)

Next we write the equations in the transfer matrix form in which port
(1) is the output port and port (2) is the input port in accordance with the
ABCD matrix representation of (5.79):

1 Zo Y./vt = -- [v2 + Zo(-i2)]
IL 9d

td (5.122)

Y"
t °

1 Y Y. .

i = -- [v2 + Zo(-22)]
a Zd +

2y , (5.123)
IL 9 99

with

9mP- (5.124)
99d

Finally, we introduce wave amplitudes as in Sect. 5.7. The equations as-
sume a particularly simple form:

2
(5.125)a1 = --a2 +7a

A
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Yb Ya
2 2

-.- a2
f- b2

match match

Fig. 5.13. The wave generator equivalent circuit of an FET

bi='Yb,

with

1 Zd + 1 iYa=-/ gd 2V/J9

1
'Yb = - 2 99 z9

(5.126)

(5.127)

(5.128)

Figure 5.13 shows the equivalent circuit of the FET in the normalized
wave representation. We have omitted the transformers. One must remember
that the gate resistance and drain resistance are greatly different, the former
being much larger than the latter. Hence, the characteristic impedance of the
transmission lines at the input and output in Fig. 5.13 are very different. The
representation has been expressed in terms of the wave formalism of Sect. 5.7.
The T matrix is of the simple form (compare (5.107))

T = I
-2/µ

0] , (5.129)
11

0 0

and leads to a simple expression for the characteristic noise matrix (5.115).
The characteristic noise matrix is now

1 I'ra I2 1'a 76NT =
1 - 4/µ2 [(1- 4/tL2)'Ya'Yb -(1 - 4/µ2)I'Ybl2 ]

The positive eigenvalue of the characteristic noise matrix is

A+ 1 - 4/µz { 2
{(I'Ya12) -(1-4/ L2)(Irb12)]

l+ 4 [(I + (1- µ2)(1'b12)]
2

+ (1- 2)Il'ra'rb)I2J

at

(5.130)

(5.131)
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and is, of course, equal to the positive eigenvalue of (5.39), but now looks
much simpler. The eigenvector x for the optimum noise performance is given
by (5.116), so that

IPSI=
X2

21
2)I(ya7b)I/{2[Iya12+(1- 2)I7b121

(5.132)
2

4 [(17x12) + (1- 2) (I7b12)) + (1- µ2) I(ya7b)12}

When the noise wave generators at the input and output are uncorrelated,
the optimum source impedance is a matching resistance. Then the noise of
the wave generator at the input escapes into the source, and the noise at the
output is determined solely by the drain noise wave generator. When the two
noise sources are correlated, then there is an advantage in mismatching the
source impedance to partially cancel the effect of the drain wave generator.
Figure 5.14 shows the magnitude of the reflection coefficient for different
correlation coefficients. The phase of the reflection coefficient is equal to the
phase of (ya'yb ). Figure 5.15 shows the normalized optimum noise figure. The
correlation can be used to improve the noise figure by proper choice of the
source reflection coefficient. But even for a correlation coefficient as high as
0.8, the improvement is small. It is worth noting that the optimum noise
measure goes to zero when (I7aI2) goes to zero. This is self-evident from Fig.
5.15. With no source at the output port (2) and a match at the input port
(1), no noise is fed to the output.

0.35
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0.10

0.05

1 2 3

(IYal2)

4 5

(IYb12)

Fig. 5.14. The source reflection coefficient for optimum noise performance
as a function of l) / I) for varying correlation coefficient c =
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Fig. 5.15. The normalized optimum noise measure kBoM/(Iry2b 1) as a function of
(Iryal)/(Iry6I) for varying correlation coefficient c = I(ryary)I/ (Iryal)(Iry61); p = 10

5.9 Cascading of Amplifiers

When the gain of an amplifier is not large, the noise measure is larger than
the excess noise figure, an indication of the inadequacy of the gain. In order
to appreciate the role of gain, it is useful to consider amplifiers in cascade as
shown in Fig. 5.16. Indeed, if the first amplifier does not raise the signal level
sufficiently, then it is necessary to follow it with another one, whose noise
performance cannot be ignored.

F2, G2 1
ZL

Fig. 5.16. Cascade of two noisy two-ports

The noise figure, as originally defined, is the ratio of the signal-to-noise
ratio at the input of an amplifier to the signal to-noise ratio at the output.
The noise at the input is the available power at a standard temperature 0o.
Since the ratio of the signal powers at the input and output involves only
the available gain, the signal powers can be eliminated and the noise figure
becomes the ratio of the available noise power at the output of the amplifier
to the power that would be available at the output if the amplifier were
noise-free. In our treatment we found it necessary to generalize the concept
of available power to exchangeable power. With this generalization we have
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F - kG0BG + Pex = 1 + P1_. (5.133)
k9OBG kBoBG '

where Pex is the exchangeable noise power at the output due to the internal
noise sources of the amplifier, and G is the exchangeable gain.

The definition (5.133) is the starting point for the evaluation of the noise
figure of a cascade of amplifiers [55]. Note that the exchangeable gain of two
amplifiers in cascade is the product of the exchangeable gains of the individ-
ual amplifiers. Attaching subscripts 1 and 2 to the quantities pertaining to
amplifiers (1) and (2), we have for the excess noise figure F-1 of the cascade

F - 1 = G2Pex1 + Pex,2 _ Pxl
+

Pex,2

kO0BG1G2 kO0BG1 k90BG1G2

F2-1=F1-1+
G1

(5.134)

The exchangeable power at the output of the second amplifier can be nega-
tive, if the output impedance of the first amplifier has a negative real part.
However, then G1 is also negative and F - 1 of (5.134) is a sum of positive
noise contributions, as one would expect from a proper definition of noise
performance. Equation (5.134), in conjunction with the definition of noise
measure, gives the cascading formula for the noise measure:

M= F-1 = F1-1+(F2-1/G1)
-M1+ (M2 - M1)

G2-1
1-1/G 1-1/G1G2 G-1

(5.135)

If the two amplifiers have the same noise measure, the noise measure of the
cascade is the same as that of the individual amplifiers. This is one of the
invariance properties of the noise measure. This equation also shows that the
amplifier with the lowest noise measure should be placed first in the cascade.

5.10 Summary

This chapter studied linear noisy multiports as basic components of any mi-
crowave or optical system. Optics has not been emphasized at this point,
because in order to understand the noise at optical frequencies, it will be
necessary to quantize the electromagnetic field. Yet all of the observations
made about the general properties of microwave systems will be applicable
in the domain of optics. We established general properties of linear noisy mul-
tiports as determined in a narrow frequency band B. If the performance of
such networks over a broad bandwidth is of interest, the characteristic noise
matrix must be treated as a function of frequency. We started this chap-
ter with the study of the available power or, more generally, exchangeable



5.10 Summary 191

power, obtainable from a linear noisy N-port, within a narrow bandwidth
centered at one frequency. We embedded the N-port in a lossless, noise-free
2N-port and then evaluated the stationary values of the power flowing out
of the jth port, with all other ports open-circuited. The stationary values
were found to be the eigenvalues of the characteristic noise matrix. The anal-
ysis was carried out in the impedance formulation of the network. We then
showed that a transformation into the scattering-matrix formulation defined
a new characteristic noise matrix in terms of the new network parameters.
The new characteristic noise matrix was related to the original one by a sim-
ilarity transformation, and, thus, possessed the same eigenvalues. We also
found that a lossless embedding of the network resulted in a similarity trans-
formation of the characteristic noise matrix. Further, we showed that the
characteristic noise matrix in the scattering-matrix formulation related to a
thought experiment involving the extremization of power flow that differed
from the one in the impedance formulation.

Then we studied the noise performance of linear two-ports used as ampli-
fiers. The noise figure of an amplifier measures the deterioration of the signal-
to-noise ratio caused by the amplifying process. However, the noise figure by
itself is not sufficient to characterize the noise performance since it does not
discriminate against low gain of the amplifier. The noise measure is a better
measure of noise performance. In particular, the optimum achievable noise
measure is the lowest positive eigenvalue of the characteristic noise matrix.
This property of the noise measure endows it with fundamental significance.

We studied one equivalent circuit of a junction field effect transistor and
determined its optimum noise performance. We showed that the optimum
value of the noise measure could be realized simply by adjustment of the
source impedance, i.e. with an appropriate impedance transformer between
source and amplifier.

The optimum noise measure of a two-port amplifier is a measure of the
quality of the amplifier. When a particular gain and noise figure are realized
with the amplifier, the noise measure achieved can be compared with the
optimum value in order to decide whether further changes in the design of
the system are worthwhile, or whether the noise measure achieved is close
enough to the ultimate limit. In order to determine the ultimate limit it is, of
course, necessary to determine it from measurements on the two-port. There
is standard equipment to measure the scattering matrix of a two-port. With
the two-port matched on both sides, the measurement of the noise power
escaping from the two-port in a bandwidth B determines (Is' l) and (s21).
With one side of the two-port shorted out, the cross correlation (sls2) can
be determined from a measurement of the output noise power at the other
port and the knowledge of the scattering matrix.

The work described in this chapter was carried out by the author and his
colleague Richard B. Adler in the 1950s. Only the example of the junction
field transistor is of later vintage. The noise measure was proposed as the
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appropriate measure of noise performance of an amplifier. This proposal did
not catch on, mainly because commercial amplifiers at RF and microwave
frequencies tended to have large gains, and thus the difference between the
excess noise figure and the noise measure was not significant. Today, when
optical doped-fiber amplifiers are used, often with gains less than 10 dB, it
may be appropriate to reconsider the use of the noise measure instead of the
noise figure.

The work in the 1950s on microwave amplifiers led the author to the
conclusion that there was no fundamental classical limit on the noise measure
of an amplifier, in particular if cooling of the device to low temperatures
was an option. For a parametric amplifier, well known in those days, and
discussed in detail in Chap. 11, classical theory predicted an arbitrarily low
noise measure if the amplifier was cooled to absolute zero temperature. With
the advent of the laser in the early 1960s amplifiers became available whose
noise measure could not be made arbitrarily low, since quantum effects could
not be ignored. This led the author into the study of noise in lasers and to
many issues described further on in the text.

Problems

5.1* In the text, we found the extremum of an expression of the form

xtAx - AxtBx

by differentiating the expression with respect to xt, treating x as a constant.
A and B are Hermitian matrices. In fact, the extremization is with respect
to the amplitudes Ixil and phases lpi, which are contained in both x and xt.
It is the purpose of this problem to show that differentiation with respect to
the amplitudes'xi) and phases Oi as independent variables is equivalent to
differentiation with respect to xt keeping x fixed.

(a) Express xtAx and xtBx in terms of Ixil and exp(i0i).
(b) Differentiate with respect to 1xi{.
(c) Differentiate with respect to /i.
(d) Combine the two sets of equations in such a way as to arrive at

Ax-\Bx=0.
5.2 An amplifier can be constructed from a negative conductance gYo (g < 0)
connected to port (2) of a circulator (Fig. 5.8). The negative conductance has
an associated noise source.

(a) Derive the scattering matrix for the two-port between reference ports (1)
and (3).

(b) Determine the characteristic noise matrix and its eigenvalues.
(c) By direct evaluation determine the noise measure of the amplifier.
(d) How is the optimum noise measure achieved?
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5.3* Consider the nonreciprocal circuit of Fig. 5.5. Under what conditions
could this circuit represent a network at thermal equilibrium?

5.4* Determine the noise figure and noise measure of the circuit of Fig. 5.5
by direct evaluation.

5.5 The scattering matrix of a two-port can be measured with standard
equipment. Show how the noise correlation matrix could be obtained exper-
imentally by placing appropriate shorts into the input and output.

5.6 A reactive feedback admittance Y is connected between the gate and
the drain of the FET of Fig. 5.5. Show that the characteristic noise matrix
remains unchanged.

5.7 Assume that the two noise sources in the equivalent circuit of Fig. 5.12
are uncorrelated. How does the noise figure vary as a function of the turns
ratio of the transformer at the input of the amplifier?

5.8 The cascading formula is valid even if there is mismatch from stage to
stage, because the definition of the noise figure takes this mismatch properly
into account.

Determine the noise figure of a cascade of two FETs using the results of
Prob. 5.7. The noise sources within each amplifier are assumed uncorrelated.

5.9 Assume that the two amplifiers in the preceding problem are identical
and that transformers are placed between the source and the first amplifier
and between the two amplifiers, of turns ratios nl and n2, respectively. Derive
the noise figure as a function of the transformer turns ratio.

5.10* It is well known that a Hermitian matrix has real eigenvalues. The
characteristic noise matrix is not Hermitian but is composed of the product
of two Hermitian matrices, one of which is positive definite. Prove that such
matrices have real eigenvalues. Hint: use the fact that the factor matrices can
be diagonalized by the same similarity transformation.

Solutions

5.1

(a) The products, written out in terms of magnitudes and phases, are

xtAx = Aijlxtillx;Iexp [i(oj - /t)] ,

xtBx = Bti; Ixzl lx; I exp[i(q 3 - 4t)]
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a

alxkl
Ai.ilxiIJxil eXP[i(c3 -Oi)]

= AkjlxjI exp[i% - 0k)] + AiklxiI eXP[i(Ok- Oi)]

= Aki I xi I eXP[1(Oi - 4k)] + AkilxiI exP[-i(Y'i - 0k)]

= 2Re[e-10k Ax]

since A is a Hermitian matrix.
(b)

AijlxiIlxjI exp[i% - 0i)] = ilxkle-'mk > Akjl xil exp(iq5j)
aak

.7

-ilxkIeiOk 1: AsklxjI exP(-icbj) = 21XkI Im(e-'OkAx)

(c) We obtain

2 Re [e-'01; (Ax - ABx)] = 0 ,

2IxkI Im[e-'Ok(Ax - ABx)] = 0.

It is clear that these two sets of equations imply

Ax-ABx=0.
5.3 The equations of the system are

ii = (gg - iwc9)vl + ig ,

22 = 9mv1 + gdV2 + 2d .

From the admittance matrix

9g 2 9m

2 9m 9d

we may judge whether the network is passive or active. If all determinants
and subdeterminants are positive definite, the network is passive. The deter-
minant is

det1(Y+Yt) =9g9d- 4922

The network is passive if g2M < 4gggd. Then this network can be at thermal
equilibrium. Such a network has a characteristic noise matrix that is propor-
tional to the identity matrix. From this fact we may derive the noise current
correlation matrix
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(jigI) (Zgi) 98 29m

= 4kOB
(292d) (IZdI) 29m 9d

5.4 In order to compute the available gain, we must compute the available
input power from the source P3,av and the available output power Pout,av
Suppose that the admittance of the source is Gs, and the source current
generator is Is.

Ps,av = 1i312/4Gs; Pout,av = I9meg12/49d i

where

eg = isl(G's +gg)

The available gain G is
2

G = IeggmI2Gs/IZs129d) =
9m G,

(Gs +9g)2 9d

The available output noise power is

(I9meg+id I2)/49d = (I9mGs2+9g +id12)/49d

9m 2 (IZdI) 2Re((igid))gm

49d(Gs +9g)2
(IZgI) + 49d + 49d(Gs + 9d)

The noise measure is

__ 1 {[9m/49d(Gs +9g)2](Ii) + (Iidl)/49dM
kOB ([9m/(Gs +9g)2](G.19d) - 1)

2 Re((igi*d))gm/49d(Gs + 9d)}

+([g /(G., +9g)21(Gsl9d) - 1)
5.10 The eigenvalue problem of a Hermitian matrix H is

Hx=Ax.
The eigenvalues are all real. The eigenvalue equation to be considered is

Ax=BAx;
the A matrix is Hermitian and the B matrix is positive definite and Hermi-
tian. It is possible to diagonalize and reduce to the identity the matrix B
with premultiplication by D and postmultiplication Dt. We obtain

DADtDt-lx = \Dt-'x .

The matrix DADt is Hermitian. Thus, we have reduced the problem to a
Hermitian eigenvalue problem.





6. Quantum Theory of Waveguides
and Resonators

Thus far we have studied shot noise and thermal noise. In the case of thermal
noise we extended the analysis by including Planck's quantum postulate of
energy occurring in quanta. This led to the Bose-Einstein distribution of
photons, a distribution of thermal equilibrium. Then we studied the noise of
classical linear systems, and determined the optimum noise performance of
a linear two-port amplifier with specified internal noise. In this chapter, we
begin the study of quantum noise as governed by the quantized equations of
motion.

The Schrodinger equation for the wave function of a quantum system
is a linear equation of motion. On the other hand, the world around us is
"nonlinear", yet the nonlinear behavior of a system is not easily perceived
from the Schrodinger representation. It is also well known that it requires a
certain effort to derive from the Schrodinger formalism the correspondence
principle, which shows the connection with classical equations of motion.
The Heisenberg equations of motion of operators, on the other hand, con-
tain the correspondence principle in their very appearance. The observables,
representable by c numbers classically, are replaced by operators that obey
the classical equations of motion, provided, of course, that these observables
have classical interpretations. (The spin operators are examples of operators
that do not have a classical counterpart.) If the classical equations of motion
are nonlinear, this nonlinearity carries over into the Heisenberg equations of
motion. It is for this reason that we use the Heisenberg formalism for the
representation of mode propagation in optical waveguides or optical fibers.
The operator formalism ensures that quantum fluctuations (such as amplified
spontaneous emission) are properly treated.

Quantization of the electromagnetic field is accomplished by treating the
eigenmodes of the electromagnetic-field system as harmonic oscillators. The
harmonic oscillators are quantized in the standard way. Section 6.1 reviews
this quantization procedure. Section 6.2 looks in greater detail at creation and
annihilation operators, and Sect. 6.3 studies the eigenstates of the annihila-
tion operator, so-called coherent states. Section 6.4 describes the close con-
nection between the uncertainty principle and noise. With this background,
we can address the problem of noise in a laser below threshold. We show
the need for the introduction of Langevin sources and determine their com-
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mutators from the requirement that commutators must be preserved in the
evolution of a resonator mode. Then we investigate the case of waveguides
with loss and gain. We determine the amplified spontaneous emission gener-
ated by an amplifier as required by the conservation of commutator brackets.
We describe an experiment that determines the amplified spontaneous emis-
sion and thus the noise figure or noise measure of an optical amplifier. Finally,
we study the quantum noise in a laser resonator below threshold.

6.1 Quantum Theory of the Harmonic Oscillator

The simplest approach to the quantization of electromagnetic fields takes
advantage of the fact that waveguide modes and resonator modes obey the
equations of harmonic oscillators. Quantization of the modes is in one-to-one
correspondence with the quantization of the harmonic oscillator. Interactions
between modes are taken into account by coupling Hamiltonians added to the
Hamiltonian of the oscillators. Hence, an understanding of the quantum the-
ory of the harmonic oscillator is basic to the understanding of the quantization
of electromagnetic fields.

A classical harmonic oscillator of mass m and spring constant k obeys the
equation of motion

dp

at = -kq , (6.1)

where p is the momentum and q is the displacement. The momentum is
related to the displacement by

md q = p . (6.2)

Elimination of p leads to the following second-order differential equation for
q:

d2

dt2q+w°q
_
=0, where wo = .

m

These equations of motion can be obtained more formally from the Hamil-
tonian, which is the sum of the kinetic and potential energies:

H = 2 I m + kq2) . (6.4)
(

Equations (6.1) and (6.3) follow from the use of Poisson brackets on the
Hamiltonian. The Poisson bracket is defined by a difference of derivative
pairs:

au av av au
{u, v}9 p =

aq ap aq ap (6.5)
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The time derivative of q is equal to the Poisson bracket in which u is identified
with q and v is identified with the Hamiltonian H:

dq aq (9H- H}{q =
aH aq - M p

6)(6
dt , q,p aq ap aq ap

ap
m .

The time derivative of p is equal to the Poisson bracket in which u is identified
with p and v is identified with the Hamiltonian H:

dp ap aH aH ap - aH
dt = {p, H}q,p = aq 9p

-
9q 9p

= -aq = -kq . (6.7)

These are indeed the correct equations of motion.
The harmonic oscillator is quantized by representing the observables p

and q by operators P and q and by replacement of the Poisson brackets with
the commutator brackets divided by ill. The Hamiltonian becomes

(!2

H =

2

+ kq2 I . (6.8)

Note that in the classical regime, the Poisson bracket of the position and
momentum is

aq ap
{q, p}q,p = 9q ap

ap aq - 1
aq ap . (6.9)

If the commutator bracket divided by ih is to yield unity, then the momentum
operator in the q representation must be identified with

(6.10)

Indeed, the commutator of q and P is then

(
q

a - a
q = ih.[q, P] = qP - Pq = -i 1

-04 '57q
(6.11)

Several considerations enter into the operations carried out in the above
expression. First of all, the products qP and Pq are operators intended to
operate on a function of q. Secondly, derivatives with respect to q of powers
of q in, say, a Taylor expansion of a function of q behave like derivatives with
respect to a classical (c number) variable, since every operator commutes
with itself.

Application of the same rules gives for the equations of motion

d = - - [q, H] = mP (6.12)

and
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dp - i

dt
-

i
[p, H] _ -kd. (6.13)

These are the Heisenberg equations of motion. They are in one-to-one cor-
respondence with their classical counterparts. This is one form of the corre-
spondence principle, which requires that the quantum mechanical description
of physical processes merge with the classical description in the limit when
the energy of excitation of the oscillator is large compared with hw,,.

It proves convenient to introduce normalized variables

Q =
rk.4 and P = -iaQ .

The commutator of Q and P is

(6.14)

[Q,PJ= = P,-i(9 I

QJ

In terms of these variab

2h ,, 2

=i.

les the Hamiltonian simplifies to

2 92h o

(6.15)

wP )2 (Q
(Q

aQ2

The Heisenberg equations of motion for the operators give

(6.16)

dt P = - i
[P, H] _ -woQ

d - i

(6.17)

dtQ=--[Q,H]=woP. (6.18)

Elimination of one of the two observables from (6.17) and (6.18) leads to
a second order differential equation. Instead, one may introduce "canonical"
variables that lead to two uncoupled first-order differential equations. These
canonical variables are denoted by A and At:

A = - (Q + iP) and At = 7 (Q - iP) . (6.19)

The Heisenberg equations of motion of these two operators are obtained by
addition and subtraction of (6.17) and (6.18), appropriately multiplied by is

dA
dt = -iwoA , (6.20)

dAt
= iw0At . (6.21)

dt



6.1 Quantum Theory of the Harmonic Oscillator 201

The operators A and At obey the commutation relation

[A, At] = 1 . (6.22)

The Hamiltonian, written in terms of the operators A and At, has the form

H= hwo I At A +
2

1) .

(6.23)

The energy eigenstates of the harmonic oscillator are obtained from the
Schrodinger equation for quantum states

ihdv=H .

The state of constant energy E obeys the equation

(6.24)

(6.25)

In the Q representation, this equation leads to the differential equation

(Q2
zhw" - a2 ) ')(Q) = E'b(Q) . (6.26)

Since this equation involves only the operator Q, the operator can be treated
as a c number. The solutions of this equation are Hermite Gaussians

,)n(Q) = Hn(Q)
exp(-Q2/2)

, (6.27)

with the eigenvalues

En = hw0(n + 1/2) . (6.28)

Figure A2.1 of Appendix A.2 shows some of the lowest-order Hermite Gaus-
sians. Further details are given in Appendix A.2. Any general state W(Q) can
be represented as a superposition of energy eigenstates:

00

W (Q) = E C " . (6.29)
n=0

Next we show that the operation of A = (1/V) (Q + if) on an eigenfunc-
tion On(Q) produces the eigenfunction In_1(Q), i.e. the operation annihilates
a quantum of energy 11w0. This is why the operator A is called the annihilation
operator. For the proof, we note that

8z
Qz 8Q2 - (Q_)(Q+)+i

(6.30)

(Q + aQ) (Q - aQ) - 1 .
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We obtain from (6.26) and (6.30)

v2
(Q+)(Q2_ aQ2 n(Q)

=
[_

a2 ) I (Q + a

2 \Q2 Q2 Vr2- aQ/ + 1, n(Q)

Ko V 2 (Q +
aQ) V). (Q)

This leads to the result

n (Q)
l2 \Q2 aQ2 / V12 \Q + aQ

)I

(6.31)

(6.32)

(Q + V).(Q)

Hence we have proven that (1//)(Q+0/aQ)0n(Q) = Atin(Q) is an energy
eigenstate with an energy lowered by hwo from the energy of 0,,(Q). The
multiplier produced by the operation is gleaned from the matrix element
(Ybnl Af AI yin) _ (V)njnj0n) = n. We find

AV). (Q) = V,L n-1(Q) , (6.33)

within a phase factor that can be set to unity. Similarly, we find

AtVn(Q) = n + 1 4'n+i(Q) . (6.34)

Operation on the eigenfunction Vin by At produces the eigenfunction of a
higher-lying state on the next rung on the ladder of energy states. It is for
this reason that At is called the creation operator, because it creates one
energy quantum.

The next issue to be taken up is the relation of the quantized harmonic
oscillator to the quantization of electromagnetic fields. Equations (2.154) and
(2.155) of Chap. 2 for the source-free cavity are

ddyE =P'1'

and

dI

(6.35)

(6.36)

These equations establish the analogy between the displacement q of the
harmonic oscillator and the amplitude V of the electric field of the with
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resonator mode, and between the momentum p of a harmonic oscillator and
the amplitude I, of the magnetic field. If the field patterns are normalized
as in (2.145) and (2.148) of Chap. 2, the Hamiltonian is

H
2V

(eV,2 + µI,2) . (6.37)

The field is quantized by replacing e/VV with the operator and
µ/VI with the a pair of operators for every mode. From

here on, the analysis follows the harmonic oscillator analysis. Each operator
has a set of energy eigenstates Each mode has assigned to it creation
and annihilation operators A,f, and A.

6.2 Annihilation and Creation Operators

The quantization of electromagnetic waves proceeds by representing them as
modes of a system with periodic boundary conditions, such as the modes of
an optical fiber ring. This step relates the waves directly to the modes of a
harmonic oscillator. Consider a mode on a fiber ring of length L. The choice
of the length L depends on the physical situation under consideration, and in
particular on the choice of the measurement apparatus. As another example
one may consider a free-space Hermite Gaussian mode, repeatedly refocused
by a periodic sequence of lenses.

The complex amplitude of the mode is expressed classically by Am(t),
and this amplitude obeys the differential equation:

dAm
= -iwmAm , (6.38)

dt

with the solution

Am(t) = A°, exp(-iwmt) . (6.39)

The mode, of frequency wm, has a propagation constant /3m. The mode obeys
the boundary condition /3m = (27r/L)m, with m an integer. The amplitude
can be normalized so that the energy w in the mode is given by

w=IAm12.

(6.40)

The energy w is interpreted as the total energy of the mode, composed of
the energy in the electromagnetic field as well as that in the medium. If
the medium is dispersive, the expressions developed in Chap. 2 apply. The
presence of a dispersive medium affects the dispersion of the waveguide, the
dependence on the propagation constant of the frequency w, i.e. w = w((3).
The amplitude Am(t) is a complex function of time, whereas the electric field
is a real function of time. The electric field amplitude is proportional to
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E(t) oc 2 [Am(t) + A* (t)] = A(,l)(t) , (6.41)

where we shall call AM(l) (t) the "in-phase component" of the electric field. One
may construct a component in quadrature to the electric field as

1 [Am(t) - Am* (t)] = A;2) (t) (6.42)

which is also a real function of time.
Quantization is accomplished when the modes of the electromagnetic field

are identified with the modes of harmonic oscillators, one oscillator per mode.
Comparison of (6.38) and (6.20) shows that the operator representing the
complex field amplitude Am(t) is an annihilation operator Am(t). The energy
of the mth harmonic oscillator in the state V)m is, according to (6.28),

w=hwm1nm+2) . (6.43)

It is convenient to introduce the Dirac ket and bra notation for the energy
eigenstates of the harmonic oscillator and their Hermitian adjoints: of the
mth harmonic oscillator is written lnm). Thus, (6.33) and (6.34), rewritten
in this notation for the mth harmonic oscillator, assume the form

Aminm) = nmInm - 1) (6.44)

and

At fin,,,) = n+ 1l In,,, + 1) . (6.45)

The operators of different harmonic oscillators commute, so that (6.22) can
be generalized to

[Am, An] = amn (6.46)

The operator At A,,,, is the photon number operator of the mth mode. Indeed,
combining (6.44) and (6.45), we see that operation of this operator on a
number state gives

At Aminm) = nminm) .

The Hamiltonian includes the energy of all harmonic oscillators:

H=
m

(6.47)

(6.48)

The Heisenberg equation for the evolution of the operator Am,
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and the commutation relation (6.46) lead to

dtAm=-iWmAm.

(6.49)

(6.50)

This is the same equation of motion as for the classical complex field ampli-
tude. Note that the addend 1/2 to the energy due to the zero-point fluctu-
ations does not contribute to the equation of motion, since it is a c number
and commutes with the operator Am. Further details on wave functions and
operators are presented in Appendix A.7.

The annihilation and creation operators are not Hermitian. This means
they do not represent observables, since observables must be represented by
Hermitian operators. On the other hand, the operators representing the in-
phase and quadrature components of the electric field as defined classically
in (6.41) and (6.42) are Hermitian:

Am = 2 (Am + Am) , (6.51)

A(,n) =
1

2i
(Am - A,t.,L) . (6.52)

The expectation value of an operator is evaluated by "projection" with the
state of the system. In Dirac notation, the expectation value of the photon
number operator Amt Am when the system is in a number state Inm) is

(nmIAmAmInm) = nm . (6.53)

This result follows from (6.44) and (6.45) and the normalization of the eigen-
states

(nminp) = 6mP .

The higher order moments of the number operator are

(nmI (At Am)NInm) = nmm .

(6.54)

(6.55)

This shows that the photon number of a number state has the definite value
nm as expected.

6.3 Coherent States of the Electric Field

Quantum states of the electromagnetic field may exhibit nonclassical behav-
ior. Some examples of such behavior will be discussed later on in this chapter
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and in Chap. 7. The quantum states that are closest in behavior to classical
fields are the so-called "coherent states" [64-66]. The coherent state of the
mth mode is represented by the ket la,,,,). In order to simplify the notation
we shall drop the subscript m on the mode when a single mode is considered.
Whenever a superposition of modes is treated, we shall restore the subscripts.
The coherent state la) can be written in terms of the energy eigenstates, the
so-called photon number states [66,67]

n
lee) = e-1.12/2 E a

In)
n n

(6.56)

where a is a complex number. One may confirm easily that the coherent state
is an eigenstate of the annihilation operator, using (6.44):

Ala) = ala)

Similarly, the Hermitian conjugate operation leads to

(alAt = a*(al

(6.57)

(6.58)

The coherent state has Poissonian photon statistics. Let us evaluate the Mth
moment of the photon number in a coherent state la):

a*man(nM) _ (al(AtA)Mla) = e-1`12 E m'nl (mI nMI n)
m,n

e-I«I2 > HM
n!n

The expectation value of nM is the probability-weighted sum:

(nM) = Ep(n)nM
n

(6.59)

(6.60)

Comparing (6.59) and (6.60), we find that the probability distribution is

p(n) =
e_!al2 Ial2n

(6.61)
n!

The average photon number (n) is

2n
Ep(n)n = E

e-1-1z IaI(

n =
n n

Ial2 e-I«!2
l nljn = 10,12

.

n

(6.62)

Thus, we may write the probability (6.61) in terms of the average photon
number (n) = Ial2:
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p(n) = e-(")
(n)

which is the Poisson distribution. The expectation value of the photon num-
ber operator, (1AtAI), gives the photon number in the mode in a ring of
length L. Appendix A.7 discusses further properties of wave functions in the
photon number state representation.

The expectation values of the in-phase and quadrature fields for a coherent
state are

(alAl1lIa) = 2(aI(A+At)Ia) = 2(a+a*)

and

(aIA(2)Ia)
2i(al(A-A')Ia)

2i1

(6.65)

We find that the complex parameter a represents the expectation value of
the electric field in the complex phasor plane.

The commutator is closely related to the mean square "vacuum" fluctua-
tions of the field. We start by asking for the number of photons in a waveguide
mode in the ground state, the state I0). It is clear that

(OIAtAIO) = o. (6.66)

On the other hand, using the commutation relation, one finds that

(OIAAtIO) = 1. (6.67)

The expectation value of the field in the ground state is zero:

(0IAMI0) = (011(At + A) IO) = o. (6.68)

The mean square fluctuations of the field are

(0I(P) )210) _ (0I 4 (AtA + AA + AtAf + AAt)lo) = 4 . (6.69)

The mean square field fluctuations are due to the operator AAt, which
is in reverse order to the photon number operator. Thus, even in the ground
state, there is a contribution to the mean square field. These are the so-called
zero-point fluctuations or vacuum fluctuations of the field. Similarly,

(0I(A(2))210) = 4 . (6.70)

The fluctuations of the in-phase and quadrature components contribute to
the Hamiltonian of (6.48) the term 1/2. The mean square fluctuations of a
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coherent state are the same as those of the vacuum state. They are evaluated
from the following expression

2

1a) =

4

(aI AA + AtAt + AAt + AtAja)

-1(aJA + At 1a)2 .

(6.71)

Expressions such as (6.71) are easily evaluated if one notes that, for any
coherent state 1a), the following theorem holds:

(al (At)mAnl a) =
asman = (alAtja)m(ajAla)n

(6.72)

In words: the expectation value of the product of the creation operator At
to the mth power and the annihilation operator A to the nth power is equal
to the product of the mth power of the expectation value of the operator At
and the nth power of the expectation value of the operator A. This statement
is true when the product of the operators is written in normal order, the
creation operators precede the annihilation operators.

The theorem is useful in the evaluation of expressions like (6.71). If one
casts the sum of operators in the first expression into normal order, then all
terms of second order in the operators cancel against the square of the expec-
tation value. Left over is a term due to the commutator, which is introduced
in reversing the order of the term not in normal order. In this way one finds
simply

(aI.,AA(1)2 Ia) = 4 (aiAA + AtAt + 2AtA + 11a)
(6.73)

-1(aIAAt1a)2 = 4

The rearrangement into normal order saves a great deal of algebra when
evaluating mean square fluctuations of coherent states. Equation (6.73) shows
that the in-phase component of a coherent state has the same mean square
fluctuations as the vacuum state. Figure 6.1a displays the electric field of
a coherent state in the complex plane. The complex parameter a gives the
phasor in phase and amplitude. The endpoint of the phasor lies at the center
of a circle that shows the half-locus of the probability distribution (the locus
outside of which the probability of finding a member of the ensemble is less
than exp(-1/2)). We shall prove in Sect. 7.6 that the distribution of endpoints
is Gaussian. The ground state, or state of the vacuum at absolute zero, is
illustrated in Fig. 6.1b. The distribution of the field amplitude is symmetric
around the origin.

One may ask the question as to the physical meaning of graphs like the
ones shown in Fig. 6.la,b. They were obtained by asking for the expectation
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phasor plane
Itarea= -
4 Vacuum State

A(2) f

0
Fig. 6.1. (a) Representation of coherent state in complex phasor plane; (b) repre-
sentation of vacuum state in complex phasor plane

value of the complex field and for its mean square fluctuations. Quantum
theory describes the world probabilistically. Quantum theory does not give
information about one physical system, but only about an ensemble of iden-
tically prepared systems. If ideal measurements that do not perturb the value
of the observable are performed on such an ensemble of systems (we shall have
the opportunity of studying some of such measurements), then quantum the-
ory predicts the probability distribution of the outcomes of measurements on
such an ensemble. In the practical world, in the absence of the availability
of an ensemble of systems, one may proceed with an ensemble of measure-
ments on the same system, making sure that the system starts in each case
from the same initial state. The rule is that the expectation value (or aver-
age) of an observable, represented by a Hermitian operator, is obtained by
the projection of the operator via the bra and ket of the state, in the case
of a coherent state (al and 1a), respectively. Squares of observables are, of
course, also observables. Using this rule for evaluating expectation values,
one may determine all the moments as well as the mean square deviations of
observables.

6.4 Commutator Brackets,
Heisenberg's Uncertainty Principle and Noise

Quantum theory treats as harmonic oscillators the "unbounded" modes on
an open waveguide or transmission line, free-space Hermite Gaussian modes,
and the modes on a fiber. The excitation of a harmonic oscillator of frequency
w is described by its position and momentum q and p, respectively, or the
annihilation and creation operators A and At, respectively. In the description
of the electromagnetic field, A is analogous to the classical complex field
amplitude. The position and momentum operators q and p play the role of
in-phase and quadrature components of the electric field as referred to a
phase reference of, say, a classical oscillator of fixed phase and frequency w.
If written as in-phase and quadrature components, their dimensions become



210 6. Quantum Theory of Waveguides

identical. Whereas there is no particular significance attached to the elliptic
phase diagram of the motion of q and p of a harmonic oscillator, the phase
diagram of the motion of the in-phase and quadrature components must be
a circle. We shall come back to the deep significance of the phase diagrams
of the in-phase and quadrature components.

The creation and annihilation operators of the modes m and n obey the
commutator relation (6.46)

[Am, An] =5 mn . (6.74)

The commutators are an inalienable property of unbounded modes. They are
also intimately related to their fluctuations and thus to fundamental quantum
noise. Indeed, Heisenberg's uncertainty principle states that the root mean
square deviations of the expectation values of two Hermitian operators F and
C are proportional to their commutator C, if the commutator is a c number,
as it is in the harmonic-oscillator cases of interest. Consider two operators F
and d with the commutator

[P, G] = iC. (6.75)

Then one may show through the use of Schwarz's inequality (see Appendix
A.8) that the product of their mean square deviations obeys the inequality

((F2) - (F)2)((G2) - (G)2) >
410

. (6.76)

But, mean square deviations are noise. Thus, the commutators determine the
noise of electromagnetic modes. At the very least they establish a lower limit
on the noise.

In (6.76) we looked at two general Hermitian operators. The in-phase
and quadrature components of the electromagnetic field of a mode, AM =
(1/2)(A + At) and A(2) = (1/2i)(A - At), are Hermitian operators and obey
the commutator relation, a consequence of (6.74),

[AM, A(2)] = 2 . (6.77)

Thus, the product of their mean square fluctuations must be greater than or
equal to 1/16.

Here we should remind ourselves that the in-phase and quadrature com-
ponents referred to a time dependence cos(wt) are sines and cosines. If the
noise is stationary, then the sine and cosine components must be uncorrelated
and equal in the mean-square sense. Hence, one may conclude immediately
that for a stationary process

([AM]2) - (All' )2 > 4 and ([A(2)]2) - (A(2))2 > (6.78)

This establishes the minimum amount of quantum noise associated with the
in-phase and quadrature components.
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6.5 Quantum Theory of an Open Resonator

In Sect. 6.2 we discussed the quantization of modes in ring resonators. In this
section, we shall study the equations of motion of the closed and the open
resonator in greater detail. The present approach should be compared with
the analysis in Sect. 2.12. We shall concentrate on a single resonance and
drop the subscript m on the mode. We denote the creation and annihilation
operators of the complex amplitude of the resonator mode by Ut and U. The
Hamiltonian of the closed resonator is

Fl=fiiwollltil+2l. (6.79)

The commutation relation

[U, Of] = 1, (6.80)

employed in the Heisenberg equation of motion, leads to the differential equa-
tion

dU = _iwoJ
. (6.81)

dt

This is the description of the closed resonator. The equations for the open
resonator are more subtle. In Sect. 6.4, we discussed the classical description
of a resonator coupled to a waveguide. The coupling introduced a decay of
the mode due to leakage into the coupled waveguide. A decay has no simple
quantum description, since it "smacks" of irreversibility, and the equations
of quantum mechanics are reversible. Now, it is well known that decay can
be simulated in a quantum system by coupling it to an infinite set of modes.
This is a very fundamental concept, and hence it is of interest to arrive at the
quantum formulation of the classical equation (4.49) using this approach.

short

waveguide "resonator"

cavity

symmetry
plane

L

reference

plane

Fig. 6.2. Resonator coupled to long waveguide (L -+ oo)
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Consider a resonator with one single resonant mode of interest, of fre-
quency w0, coupled to a very long waveguide, which in turn may be modeled
as a resonator with infinitesimally closely spaced resonance frequencies (see
Fig. 6.2). The Hamiltonian of the total system, in terms of the creation and
annihilation operators of the two subsystems, is

H i (jtU+)+Vi

+fiiKjUtV.7
(6.82)

where the wj are the frequencies of the waveguide modes, wo is the frequency
of the resonator mode, and the Kj are the coupling coefficients of the waveg-
uide modes to the resonator modes and vice versa. The Heisenberg equations
of motion are

dU
dt

=-iw0U-i KjVj ,

d j = -k U1 - K
-

(6.83)

(6 84)
jj .Y

j
1

_

.

Note that the coefficient of coupling of Vj to U is the complex conjugate of
the coefficient of coupling of U to Vj. This is the consequence of the fact that
the equations are derived from a Hamiltonian and thus conserve energy.

At this point, it is of interest to ask about the nature of the modes associ-
ated with the operators Vj in the long waveguide "resonator" attached to the
resonator under study, called simply the "cavity". The classical picture of a
resonator mode radiating into an output waveguide can be used as a guide.
If an initial excitation in the cavity starts to radiate into the external guide
at t = 0, the electromagnetic field may be constructed from a sequence of
impulses traveling into the guide in Fig. 6.2 from right to left. How is this phe-
nomenon represented by a superposition of modes in the shorted waveguide
"resonator" of length L?

The shorted-waveguide "resonator" has standing-wave solutions that are
symmetric and antisymmetric with respect to the central symmetry plane be-
tween the two end shorting planes. These modes by themselves cannot couple
directly through the shorting plane into the resonator. Coupling is achieved
by placing surface currents at the reference plane, surface currents that rep-
resent the cavity field at the reference plane, as discussed in Chap. 2. Here we
do not need to be concerned with the details of the current distribution, since
the coupling is represented by the coefficients Kj in the Hamiltonian (6.82).
Traveling waves may be constructed from a superposition of the standing
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waves. When the cavity is excited at t = 0, such traveling waves emerge from
the cavity traveling to the left. The fact that the waveguide resonator is ter-
minated in an electric short at the far left end does not affect the solution
until the wave hits this termination. With L -i oo this does not happen
within a finite time.

The operator amplitudes Vj of the waveguide modes obey the commuta-
tion relations

(6.85)

These commutators are inherent attributes of the modes. The coupling of
the resonator to the waveguide alters the modes in that the Vj acquire a
contribution from the resonator mode leaking into the waveguide. This con-
tribution is from the coupling of U in (6.84) and consists of waves traveling
away from the resonator. With an assumed time dependence of U of the form
exp(-iwt), we find for the part of Vj affected by U

V(U) = Ki U
2 W -Wj

(6.86)

When this expression is substituted back into (6.83), we find the determinan-
tal equation for w:

W - wo = I KjJ2 (6.87)

The summation over the closely spaced resonances can be replaced by an
integration. Assuming that the coupling coefficients do not vary with fre-
quency over the frequency interval of interest, setting JK? =

rc2('6,Q/Qw)'6Wj = (rc2/v9)zAwj, and using the fact that the integral passes
around the pole in a semicircle, we obtain E. IKjI2/(w-wj) -4 -(rc2/v9)lri.
The determinantal equation (6.87) becomes

-i(w-w0)7r rc2=-1. (6.88)
V9 Te

We have found a decay rate 1/Te due to the coupling to the waveguide.

Equation (6.83) has acquired a decay and is modified to read

- =-ilw0-T IU.
e/

(6.89)

However, this is only half of the story. The decay of U was found by first
evaluating the excitation of the VV by the resonator mode, using (6.84) and
then reintroducing these excitations into (6.83). An equation has been ob-
tained that leads to the erroneous conclusion that the commutator of U and
Ut decays at the rate 2/Te. Indeed, we find from (6.89)
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t
[U, Ut]

=
{,t]

+ -T [U Ut

What has happened is that we have ignored the excitation of U by the V4
evidenced by (6.83). Hence, we write instead of (6.89)

Ctt e

as

(6.90)

Here the Vj are sources driving U. The contribution is of waves traveling in
the direction of the resonator and hence unaffected by U. The situation has
become analogous to the one encountered in a cavity at thermal-equilibrium.
There, a decay of the mode called for the introduction of a Langevin source so
as to maintain the energy in the resonator at the thermal-equilibrium value.
On the other hand, the appearance of the sources in (6.90) is the natural
consequence of the Hamiltonian description of the resonator modes and the
modes in the output waveguide. In order to show that the sources are precisely
the ones necessary to maintain the commutator time-independent, we solve
for U, noting that the modes Vj drive U at their respective frequencies Wj:

-i Ej K; Vj
U i(W0 --wj) + 1/Te

The commutator of U is given by

KjK*[' j -'I i 1
- (Wo -Wk) + 1/7-d

7,k
(Wo - WJ) + 1

/Te]1

(6.91)

Wo -
I K7I (tc

/v9) wj YJ2J o - j)2 /Te
IrTe 9 = 1 .

7)2 + 1 /Te W

(6.92)

The commutator is unity. The sources due to the coupling to the waveguide
compensate for the decay of the commutator.

The preceding analysis demonstrates a very general principle. The com-
mutator of an observable is a physical attribute of the observable. This at-
tribute must be conserved, the commutator must not change with time. Loss
causes decay of an excitation. In quantum theory, such a decay is modeled
by coupling of the system to a reservoir with a very large number of modes.
This coupling does not only cause the decay, it also introduces sources that
keep the commutator of the system invariant with time. These sources are
the quantum counterpart to the Langevin sources required to maintain the
thermal fluctuations in a lossy system at thermal equilibrium.



6.6 Quantization of Single Mode Waveguide

6.6 Quantization of Excitations
on a Single-Mode Waveguide
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The operators in Sect. 6.2 can be renormalized in a way analogous to the
renormalization of the mode amplitudes in Chap. 4 when dealing with ther-
mal noise. There are subtle differences in the renormalization, however, which
arise from the nature of the quantum description of physical processes. Clas-
sically, one analyzes steady-state excitations in waveguides and transmission
lines as evolutions in space. The classical approach ends up naturally with
a Fourier decomposition in the frequency domain, namely spectra of signals
and noise.

The concept of a steady state evolving in space at a set of frequencies
is foreign to quantum theory, since it describes the evolution of operators in
time, in terms of the Heisenberg equation of motion. This fact manifests itself
in the effort one must expend to arrive at quantum descriptions of processes
that would have been denoted as a steady state in the classical domain. A
good example is the propagation of waves along a single mode waveguide.
One selects a forward-wave "packet" occupying a length L, and one follows
its propagation in time. This wave travels forward at the group velocity and
occupies different spatial regions as it proceeds. If the wave packet hits an
obstacle, it is partially reflected and partially transmitted. Eventually, a wave
propagating in the reverse direction appears on one side of the obstacle, and
a transmitted wave appears on the other side. The Heisenberg equation of
motion describes this evolution of the wavepacket in terms of a scattering
event. A steady state analogous to the classical steady state is established
when many wavepackets follow each other and their statistics are stationary
in time.

Because quantum theory describes evolution in time, a Fourier decom-
position in the frequency of the excitation is not natural. It is more natural
to look at modes of a given propagation constant and study their evolution
in time. The operator A represents a mode excitation on a waveguide of
length L. It is so normalized that flAt,,,A,J) is equal to the photon number.

The modes obey periodic boundary conditions:

27r
.

T m (6.93)

We now introduce a new normalization of the creation and annihilation oper-
ators, which then permits us to treat the excitation of modes as a continuum
in the sense of a Fourier integral rather than a Fourier series in the limit
L -* oo. Compare Appendix A.5 and (4.42). This normalization is

a(3) = (-,/-L-/27r)Am. . (6.94)

In the limit L -* oo, renormalization changes the commutation relations
(6.46) into
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1

r8(/3
[a(,a), at(/3')J = 2-7

(6.95)

Operation of the creation operator on a photon number state of a mode of
propagation constant /3 gives

I ) l&t 0 lI 966) n n+( ),=

2
n+ ( . )

with an analogous relation for the annihilation operator

a(/3) - 1)) = 2 I 976ln n . ( . )

The Hamiltonian of the mode becomes

H = 27rhJ d/w(3)at(/3)a(0) . (6.98)

In the Hamiltonian we have omitted the contribution of the zero-point fluc-
tuations. If the mode spectrum extends to infinity, this contribution becomes
infinite as well. It does not contribute to the Heisenberg equations of motion,
and thus is conveniently suppressed. The integral over propagation constants
in (6.98) has to be interpreted carefully. A dispersion-free waveguide, such as
a structure supporting a TEM mode, propagates both forward and backward
waves. The forward waves have positive propagation constants ,3, and the
backward waves have negative propagation constants. A forward-propagating
pulse is composed only of waves with positive propagation constants. Hence
the integral in the Hamiltonian (6.98) describing a pulse involves only positive
propagation constants, clustered around a "carrier" propagation constant /30.

The operation of the annihilation operator on a coherent state Ia(/3))
gives

a(0)1a((3)) = 2 a(,3)Ia(Q)) . (6.99)

The Heisenberg equation of motion for the new operators follows via the
use of the commutation relation (6.95) with the Hamiltonian (6.98):

dta(/3) _ -iw(/3)a(3). (6.100)

Note that the frequency of the mode is now treated as a function of the
propagation constant. The mode may be dispersive if the frequency is not
a linear function of /3, as given by the dispersion relation of the waveguide.
Since, quantum mechanically, h/3 is the momentum of the mode, the disper-
sion relation is now the relation between the energy h w and momentum 1,/3.
Note that the simple formalism presented here addresses waveguides with
relatively small dispersion so that the criterion for the propagation direction
of a wave is simple.
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In a way analogous to the definitions of the Hermitian in-phase and
quadrature operators, one may define renormalized versions of these two op-
erators:

1

[a(23)+at(Q)] (6.101)

and

alzl (/3) = 1 [a(8) - at (/3)[ (6.102)

6.7 Quantum Theory of Waveguides with Loss

In this section, we consider the quantum description of a waveguide with loss.
We focus on the evolution of the operator a(/3) of propagation constant 0.
If we remove the natural time dependence exp(-iwt) by replacing a(3) by
a(,3) exp(-iwt), we obtain from (6.100), in the case of zero loss, the equation
of motion

(6.103)

When the waveguide is lossy, the operator a(3) decays as it propagates. In
order to preserve commutator brackets, we need to introduce operator noise
sources [16). Denote the decay rate by v(/3). We obtain the equation of motion

dta(/3) _ -v(/3)a(Q) + 9(/3) , (6.104)

where s(/3) represents operator sources due to the coupling to loss reservoirs.
The loss reservoirs can be represented by distributions of resonators coupled
to the waveguide at every cross section. This is analogous to the representa-
tion of decay and commutator conservation in the case of the open resonator
in Sect. 6.5, which introduced sources into the resonator equation represent-
ing the mode excitations of the output waveguide. A similar model could be
used for the determination of the loss and the noise sources for the modes of a
waveguide. The mode of the waveguide of propagation constant /3m could be
coupled to a continuum of modes. The coupling leads to temporal decay and
the appearance of noise sources. The sources maintain the commutator of the
mode annihilation and creation operators, integrated over the bandwidth of
the resonance. The modes with propagation constants and /37,+1 decay
in the same way and possess analogous noise sources. Here we need not go
through a detailed model of such couplings. Instead, we can derive the prop-
erties of the noise operators simply from the requirement of conservation of
commutator brackets. The rate of change of the commutator follows from
(6.104):
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dt law), at(a')] _ -[0r(/3) + 0,W)] [a(,3), a,(/3')]

+19(0), 6, tW')] + [a (Q), S1(,Q')]

=0.

(6.105)

The decay rate must be equal to zero since the commutator is an intrinsic
property of the operator. One would expect that the noise source opera-
tors and the mode amplitude operators would commute. However, in the
short time interval At, the mode amplitude acquires a contribution from the
source, just as discussed in Chap. 4 in connection with the evaluation of the
thermal noise source. Thus [§((3),at(/3')] = (1/2)[9(/3),9t(3')]At and, since
[a(0), at (/3')] = (1/2ir)b(/3 - /3') according to (6.95), we find

[s(/3), st(Q')] = --2a, (/3)d(0 - /3')6(t - t') . (6.106)

We see that the commutator behaves in a way similar to the correlation
spectrum of the thermal noise sources. The commutator referring to different
times and different propagation constants is zero. The operators s(/3) and
st(/3) have the characteristics of annihilation and creation operators, respec-
tively, since u (O) > 0. They create or destroy photons of the optical mode
through interaction with the loss reservoirs.

Some remarks are in order with regard to the integration of a linear dif-
ferential equation involving operators of the form of (6.104). Because the
equation is linear in the operators, integration of the equation never encoun-
ters products of the operators and hence never need consider commutation
relations. For this reason, the integration proceeds in the same way as if the
operators were c numbers. The operator a(/3, T) at the time T is found from
the initial conditions by integration of (6.104):

Ta(3, T) = exp(-vT)a(/, 0) + exp(-QT) J dt exp(at)s(/3) . (6.107)
0

Equation (6.107), and the equation for the creation operator, the Hermitian
conjugate of (6.107), can be used to evaluate expectation values of the op-
erators and their moments when the input excitation is specified. We shall
concentrate here on coherent-state excitations of the waveguide input and
ground state excitations of the noise reservoir. The system is in a product
state Ia(/3))10). This product state is a generalized coherent state of the sys-
tem as seen when it is operated upon by the annihilation operator a(/3, T).
We find

a(/3,T)Ia(/3)10) = 2 exp(-QT)a(/3)Ja(/3))J0) . (6.108)
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The state is an eigenstate of the annihilation operator. Using (6.108), we find
for the expectation value of the photon number

(n) = 27r(01(a(/3)I fd,3at(13,T)a(O,T)Ia(/3))10)
(6.109)

= exp(-2aT)la(/3)12 .

The photon number has been reduced by an attenuation factor of the ampli-
tude squared. For the expectation value of the operators in antinormal order,
using the commutator (6.95), we find

(01(a(/3)la(/3,T)at(/3',T)la(/3))10)

_ (01(a(l3)Iat(/3,T)a(l3',T)la(/3)) 0) + 21r60-131)

(2L exp(-2cT)Ia(/3)12 +

(6.110)

One may evaluate the mean square fluctuations of the in-phase and quadra-
ture operators in the same way. The algebra is rather cumbersome if done
routinely. Instead, it is better to take advantage of the fact that a coherent
state is an eigenstate of the annihilation operator. As shown in Sect. 6.2,
one may write sill(Q)ai1)(Q') = 4[a(/3) + at(Q)][a(6') + at(,(3')] in normal
order. When (a(1)(/3))(a(1)(/3')) is subtracted from (a(')(/3)a(1)(,Q')), only the
contribution of the commutator remains, so that

(01(a(3)IP) (0, T)&(') (3',T)Io(3))10)

-(01(a(/3)Iai1l(/3,T)la(/3))I0)(01(a(3)Iall) (i3',T)Ia(/3))10) (6.111)

=
1

42 6()3-/31).

In the same way we find

(01 (a(a)Ia(2)(/3, T)a(2) (/3', T)Ia(/3)) I0)

-(01(a(/3)Iai2l()3,T)la()3))10)(01(a(/3)Ia(2)(/3',T)Ia(/3))10) (6.112)

=
1

1 6()3-)3/).4 27r

The spectrum of the fluctuations expressed as a function of propagation con-
stant is ,3-independent, analogously to the frequency spectrum of thermal
noise, which is w-independent.

The quantum theory of a waveguide with loss bears a close analogy to the
classical analysis of the same waveguide at thermal equilibrium. The thermal
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fluctuations of the electromagnetic field would decay in the waveguide, were it
not for the Langevin noise sources that reexcite the modes and maintain the
thermal fluctuations. In the quantum-theoretical treatment Langevin opera-
tor sources are required to maintain the commutator relations. Maintenance
of the commutator relations then ensures maintenance of the mean square
field fluctuations of the waveguide field in its ground state. The zero-point
fluctuations bear a close resemblance to thermal fluctuations.

We have computed the fluctuations produced by the noise sources under
the assumption that they are in the ground state. The question may be
asked whether this is a severely restricting assumption. Generally, the loss
reservoirs would be thermally excited. If the temperature of the reservoir is of
the order of room temperature 0o = 290 K, the contribution of its excitation
is negligible compared with the contribution of the zero-point fluctuations,
since kBo << hw for an optical frequency w. The ratio hw/kBo is typically of
the order of 40.

The introduction of the noise source for conservation of the commutator
bracket may seem ad hoc. In the next chapter, we shall show models of loss
that are based on a Hamiltonian description of the system. The loss will be
due to output ports that are not explicitly included in the description of the
output, and the noise sources will be shown to arise from ports of the network
not accessed by the signal.

6.8 The Quantum Noise of an Amplifier
with a Perfectly Inverted Medium

Quantum theory permits a generalization to active devices not possible in the
classical physics of thermal equilibrium, which is only applicable to passive
systems. Indeed, if the system has gain, then a(/3) < 0, and the right-hand
side of (6.106) becomes negative. The solution for the output operator a(,a, T)
is of the same form as (6.107),

(0, T) = exp(Iv1T)a(/3, 0) + exp(I o, IT) f dtexp(-IaIt)9(0) . (6.113)
00T

The product state Ia(/3))I0) is not any more an eigenstate of the operator
&(3, T) which, in turn, ceases to act as an annihilation operator. In the anal-
ysis it is necessary to treat the two operators on the right hand side of (6.113)
separately, the first one as an annihilation operator, the second one as a cre-
ation operator. The consequence of this reversal is that photons appear at
the output of the amplifier even if no photons are fed into its input. Consider
the product state (a(/3))10), i.e. the situation when a coherent state is fed
into the amplifier and the reservoirs of the noise sources are in the ground
state. This is the case when the population of a laser medium is in the upper
level and is equilibrated at the temperature of the host medium. Since this
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temperature is of the order of magnitude of room temperature Bo = 290 K,
and hw(/3) >> k00, one may approximate the equilibration temperature as
equal to zero, with the states of the upper level in the ground state. We have
for the photon number at the output of an amplifier of length B, traversed
within the time T = P/vy,

(n) = 27r(0I(a(,3)I fd/3at(13,T)a(13,T)la(l3)) 0)

= 2-7rexp(2IaIT)(a(/3)l f d/3at(/3,0)a(/3,0)1a(/3))

+2irexp(2IoIT)(0I f d,3 fo dtf dt'st(/3,t)s(/3,t)T
T0

(6.114)

x exp(-Io l(t + t')IO) .

The first term is the amplified input signal and gives the contribution
(n)sggnai = Gla(0)I2, where G = exp(2IaIT). The second term follows from
the commutator (6.106). This commutator is negative, indicating that 9(/3, t)
is a creation operator, and its Hermitian conjugate an annihilation operator.
The expectation value of the operator product §t (3, t). (/0', t') is

(o10(/3,t)s(/3',t')Io) = 1 2la(/3)I6(0 -,3')6(t-t') .

The double integral over time gives

J
0Tdtf

T dt'exp[-Ioi(t+t')](olst(3,t). (/3',t')10)
0 0

2 [1 - exp(-2IaIT)J6(/3 - (3')

(6.115)

(6.116)

The height of the delta function is L/27r, and it vanishes outside the inter-
val of propagation constant z/3 = 27rL. This interval is set by the bandwidth
of the amplifier system. Thus consider a coherent signal state that extends
over a length L, covering the time L/vg. A time-varying signal of bandwidth
B = v9/L is represented by a succession of coherent states, each occupying a
time interval L/vy. If the amplifier is followed by a filter of bandwidth equal
to the signal bandwidth, the noise passed by the filter occupies the same
bandwidth. Using this result, we find for the second term in (6.114), the
term caused by the noise source, the amplified spontaneous emission (ASE),

(n)ASE = G - 1. (6.117)

Amplification of signal photons by the factor G entails the addition of G - 1
noise photons to the signal, provided the signal bandwidth and noise band-
width are the same. Each increment Z1,3 carries G - 1 ASE photons. This
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is the well-known amplified-spontaneous-emission term of an ideal amplifier
with perfect inversion. If the inversion is not perfect, if the lower laser level is
occupied, some of the generated photons are reabsorbed by excitation of the
lower level into the upper level. This requires the inclusion of an absorption
term into the evolution equation (6.114), as treated in the next section.

Each increment a/3 corresponds to a frequency bandwidth Aw = v94/3.
If an optical filter of bandwidth AS? = NzAw is inserted at the amplifier
output, the rate of ASE photons passing through the filter is

rate of ASE photons = Nv9 (n)L sE = Nv9 L2 2i 1
(6.118)

=(G-1)- = (G - 1)B,

where B is the filter bandwidth in Hz.
Next, we compute the fluctuations of the in-phase and quadrature compo-

nents when a coherent state I a(l3)) I0) is specified as the initial condition. In
computing the expectation value of the fluctuations of a(' (/3, T) &M (/3', T),
we write

P) (3, T)aili(,3', T) = 4 [a(Q,T) + at(3,T)][a(0',T) + at(/3',T)] ,

(6.119)

and we cast the annihilation operators and the creation operators into normal
order. This must be done separately for the waveguide mode operator a(/3, T)
and the noise source operator a(/3). When this is done, we find for the in-phase
fluctuations

in-phase fluctuations = (01 (a(3) la(1) (/3, T)P) (/3', T) Ia(/3')) 10)

-[(01(a(/3)Ia 1 (/3,T)Ia(Q))I0)12

_ [(c - 1) + 4] 2-8(/3 - /3')

The same result is found for the quadrature fluctuations:

quadrature fluctuations = (01(a(/3)Ia(2)(/3,T)a(2)(/3',T)Ia(/3'))I0)

-[(UI (a(/3) Iac2>
(/3, T) I a()3)) I0)12

_ [(G - 1) + 41 2-b(/3 _01)

(6.120)

(6.121)

When the gain is large, the fluctuations are twice as large as the input fluc-
tuations amplified by G. This finding has a deep significance in the context
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of quantum measurements of two noncommuting observables, as we shall see
in Chap. 7.

6.9 The Quantum Noise
of an Imperfectly Inverted Amplifier Medium

An imperfectly inverted medium has a nonzero population in the lower energy
level. This population acts as an absorber. One may analyze the amplifier
as an active waveguide of gain coefficient au due to the population in the
upper laser level, interspersed with a passive one of loss coefficient at, with
at < o , due to the population in the lower laser level. The equation for the
mode propagation is

dta(0) _ (au - at)s(3) + Su(O) + se(t) (6.122)

where sv, and se are the associated noise sources, with the commutation
spectral densities

su(/3')] _ -2au 2-6(/3 - 0')8(t - t')

se(/3')} = tae 2 8(/3 - ,(3')6(t - t') .

The integral of (6.122) is

a(/3, T) = exp[(au - ae)T]a((3, 0) + exp[(au - ae)T]

x
L

(6.123)

(6.124)

T (6.125)

dtexp[-(au - at)T][su(l3) + se(L3)}

The output operator a()3,T) consists of the amplified input operator,
/a(/3, 0), with vG exp(au - ae)T, and two noise sources

T

nu(l3) = exp[(au - ae)T] f dt exp[-(au - Ole)t]§u(0 t) (6.126a)
0

and

Tne(Q) = exp[(au - ae)T] f dt exp(au - at)t]st(/3, t) . (6.126b)
0

The commutators of these noise sources are
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[nu(0), nu(a')1 = exp[2(au - ae)T]

x J T dt
J

T dt' exp[-(au - ae)(t + t')1[9u(0, t), t))
0 0

= 1 6(3 -,3')au(1 -G)au
at

and

(ne(a), ne(i3')} = exp[2(au - at) T]

IT IT
X J T dt

J
T dt' exp[-(au - at) (t + t') 1 [S,(3, t), Se(311 t)1 (6.127b)

=
ore(G-1)

.

27r
au

at
According to the sign of the commutator, hu(,3) can be identified as a

creation operator and ne(/3) as an annihilation operator. The first one is
contributed by the upper level of the gain medium, the second by the lower
level. The analysis can be simplified if we assume the presence of filters that
accommodate a signal occupying a spatial slot of length L, corresponding
to a bandwidth B = v9/L. We may then revert to the original operators
A introduced in Sects. 6.1 and 6.2 and related to a(/3) by (6.94). Denoting
the output and input by (27r/v')2(8,T) - B and (27r/v1'L-)a(/3,T) - A,
respectively, we have from (6.125)

B=-,IGA+Nu+iVt. (6.128)

The creation operator Nu is responsible for the ASE and has the commutator

[Nu, Nv] = X(1 - G) , (6.129)

where

X= au - at
(6.130)

The parameter X is the so-called inversion parameter. It is equal to unity
when the medium is perfectly inverted, and becomes greater than unity for
a partially inverted gain medium.

The annihilation operator Nt represents the noise introduced by the lower
level and has the commutator

[9e,Ne] =(X-1)(G-1). (6.131)

This is a compact form of the amplifier description which will be of use in
the evaluation of the probability distribution of the field in the next chapter.
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The simple expression (6.128), along with (6.129) and (6.131), can be
used to answer the question as to when optical amplifiers behave like classi-
cal amplifiers with additive noise. Thus, we may compute the mean square
fluctuations of h(l) and B(2) for a coherent input state Ia). The noise sources
are in the ground state, indicated by a single factor 10) for simplicity

(0I(al(oE(1))2 + (aE(2))21a)I0)

= (0I(0,l(B(1))2
+ (B(2))21a)I0) - (01(aIBCl) + B(2)1a)10)2

(6.132)

When the in-phase and quadrature operators are expressed in terms of cre-
ation and annihilation operators and are put into normal order, only the
contributions of the commutators remain. We find

(0I(al(aE(1)2 + (aE(2))21a)10)

= 2G +2(OIN.'N.+NdNrI0)2

=2G +1(2X-1)(G-1).

(6.133)

The first term comes from the amplified zero-point fluctuations of the signal,
and the second term comes from the noise contributions of the upper and
lower level. In order to cast this expression in terms of signal power and
additive noise power, we transform the above into a flow in units of power by
converting the net mean square fluctuations to unit distance through division
by L and through multiplication by the group velocity v9 and the photon
energy hw:

1 hWVg(0I (al
(aE(1>)2 + (aE(2>)2Ia)IO)

= L ,wvy 12 + X(G - 1)
1

.

(6.134)

Now, 27r/L is the mode separation A,3, corresponding to a bandwidth zlw =
(dw/d,3)4,8 = v9.A8 = 27rB. Thus

(Ab(2')2la)I0) = ! wB [2 + X(G - 1)]

(6.135)

On the other hand, the power flow of the amplified spontaneous emission is

ASE power = 1 hwv9(0II N I0) = hwBX(G - 1) . (6.136)
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If we reasoned classically, we would assign half of the power flow to the mean
square fluctuations of the in-phase and quadrature components in power flow
units. Comparison with (6.146) shows that this gives the right answer in the
limit of large gain G.

The expression for the amplified spontaneous emission was known in the
years of the invention of the laser [68]. In the early days of the laser it was
not easy to separate out the fundamental Gaussian mode from a pumped
crystal emitting into a large solid angle. With the advent of optical waveguides
and single-mode fibers, this presents no problem, and it is easy to verify
(6.136) experimentally. Figure 6.3 shows the experimental arrangement. An
erbium-doped fiber laser is pumped by a laser diode operating at 980 nm
wavelength and emits at 1.54 pm wavelength. No signal is applied to the
amplifier. An optical filter of bandwidth A f2 = 21rB, much less than the
amplifier bandwidth, is put in front of the power detector. The detector can
be a bolometer, measuring power by a temperature rise, or a photodiode
calibrated in power units.

pump radiation at 980 nm

AR coating

filter H power
detector

Fig. 6.3. Experimental arrangement for measurement of amplified spontaneous
emission

6.10 Noise in a Fiber with Loss Compensated by Gain

We have emphasized several times that the quantum noise of optical com-
ponents used in communications can be thought of as additive, in the same
sense as thermal noise can be viewed as additive to a classical signal. The
mean square fluctuations of the signal amplitude after passage through the
component can be evaluated from the sum of the signal fluctuations and the
fluctuations of the added noise. In this section, we develop this semiclas-
sical picture of quantum noise in the case of an optical waveguide (fiber)
whose loss is compensated by distributed gain. This is the simplest model for
long-distance fiber communications in which distributed amplification com-
pensates the fiber loss. We shall use the results in Chap. 10 in the derivation
of the timing jitter of soliton propagation.

We consider one segment of length az of the waveguide composed of a
loss section of loss G(< 1) followed by a gain section with gain G. The gain
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section is described by (6.126b), where A is the input operator and f3 is the
output operator

(6.137)

The commutators of the noise sources are

[NT., NuI = X(1 - G) (6.138)

and

[Ne, Ne} = (x - 1)(G - 1) . (6.139)

The loss section by itself obeys the relation

B=VZA+N,c, (6.140)

where the noise source has the commutator

[9c,Nc] =1-G. (6.141)

We shall assume that the loss and gain are very small, i.e. 1 - G
1, G - 1 << 1. Further, we assume that the loss and gain balance, so that
GG = 1. Under these conditions, the cascade of the two segments, with the
output of the loss section being the input of the gain section, has the overall
response

B= /G(-,I-L-A+9,c)+&+9,e --A+&+Nv+9t- (6.142)

The signal remains unchanged and quantum noise sources have been added
to it. We find for the expectation value of the in-phase component of the
signal

(B(1)) = (A(')) .

The mean square fluctuations are evaluated as usual:

((zAB(' )2) = ((B(1))2) - (B(1) )2 .

(6.143)

(6.144)

If the signal is in a coherent state, the operator products can be put into
normal order and the mean square fluctuations result solely from the com-
mutators. The term G - 1 can be expressed in terms of the gain per unit
length. From the gain within a time interval T,

G = exp[2(a,, - o g)T] ,

we may construct G - 1 when G - 1 << 1

G-1=2(av,-ot)T=2azAz,

(6.145)

(6.146)
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where Az is the distance traveled by the signal within the time T, and a is
the gain per unit length. Since the loss is equal to the gain, we also have

L-1=2adz. (6.147)

The mean square fluctuations of the excitation after passage through one
segment of length dz are

((zAB(2))2) = 1G + 1 G(1 - L) + 1 XG(1 - L) + 1(X - 1)G . (6.148)
4 4 4 4

The first term is the zero-point fluctuation of the signal at the input that has
passed through the gain and loss; the second term is the contribution of the
noise source associated with the loss; the third term is the contribution of
the upper level of the gain medium; and the last term is the contribution of
the lower level of the gain medium. When account is taken of the fact that
G differs little from unity and that G = 1 + 2a Az and G = 1 - 2a Az, the
above expression becomes

((ABI" )2) = 4 [1 + X(2a Az)] . (6.149)

The first term is the zero-point fluctuation accompanying the signal; the sec-
ond term is the added noise due to gain and loss. The quadrature component
has the same fluctuations. In the semiclassical picture, the fluctuations are
additive to a noise-free signal. To bring this picture into correspondence with
the picture of signal and additive thermal noise, we transform the above into
a flow in units of power by converting the net mean square fluctuations to
the value for unit distance through division by L and by multiplication by
the group velocity and flaw:

L vs((,:A8(1))2 + (dB(2))2) = L v9 (2 + X(2a az) I . (6.150)

Now, 2ir/L is the mode separation 6/3 corresponding to a bandwidth /w =
(dw/d/.3)L 3 = v9 a/3 = 21rB. Thus

L
v9((4B11i)2 + (aB(2))2) = hwB

(I2

+ X(2a Az) I . (6.151)

This formula shows that the mean square fluctuations

aree

proportional to the
bandwidth and grow linearly with distance along a fiber whose gain is bal-
anced by the loss. Note that the added mean square fluctuations correspond
to the added ASE power. Indeed, this power is

L(ASE power) = hwBX(2a Az) . (6.152)

The process can be described by propagation of a classical amplitude a(w)
in the presence of a noise source
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d
d a(w) = s(w,z) (6.153)

with

(s(w, z)s* (w', z)) =
2

X2a 6(w - w')6(z - z') . (6.154)

We shall use this semiclassical formula in Chap. 10 for the evaluation of the
noise accompanying soliton propagation. It should be emphasized that the
results are correct quantum mechanically if applied to a signal in a coherent
state. The noise is additive. Further, one may note that the noise is composed
of a contribution from the gain and one from the loss.

6.11 The Lossy Resonator
and the Laser Below Threshold

In Sect. 6.5 we derived the commutator conservation of an open resonator
from a Hamiltonian description. The decay of the commutator of the res-
onator mode due to radiation into the connecting waveguide was compensated
by the coupling to the commutators of the waveguide acting as a reservoir. In
the subsequent sections we treated the waveguide modes from several points
of view. Using the formalism developed thus far, we may treat the open res-
onator problem in a different way, starting from the classical equations of the
open-resonator and quantizing them by replacing the complex amplitudes
with operators. We have from (2.221)

(two+1/TQ)U+ edta. (6.155)

In the transition to the quantum description attention has to be paid to the
meaning of the amplitudes. In the classical formalism, JUI2 represents the
energy in the resonator. This suggests that Ut U should be interpreted as the
photon number operator, as has already been done in Sect. 6.5. In the classical
description, ja(t) 12 is the power flow of the mode incident upon the resonator.
Therefore, in the quantum formulation, the operator at(t)a(t) must give the
photon flow rate in the time domain. In the propagation constant description,
27r f d13 at is the photon number operator n assigned to a wavepacket
of length L. The photon flow rate is v9n/L = (dw/d/3)n/L. Hence the photon
flow operator is given by

photon flow operator = L fdwat[/3(w)Ia[/3(w)I. (6.156)

If the photon flow rate is finite, the integral must go to infinity as L
goes to infinity. Division by L gives a finite result. Further, if the process is
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stationary, operators with different frequencies must be uncorrelated. Hence
it makes sense to write the photon flow operator of a stationary process as a
double integral (note 27r/L = 6,3 =(d,(3/dw)Aw):

photon flow operator = Jdwfdw'at[f3(w)Ja{/3'(w')]

(6.157)

fdLfdw'af(w)a(w').=

The new operator a(w) obeys the commutation relation

[a(w), at dO [a n atw)]

d)3 1

dw2
b(O-'3,)21rb(ww')

(6.158)

This operator is related to the Fourier transform of a(t), which gives the
photon flow rate in the time domain as at(t)a(t). The Fourier transform pair
is

a(t) = fdwa(w)exp(_iwt); a(w) = 2J dt a(t) exp(iwt) . (6.159)

We have for the operator at(t)a(t)

at (t)a(t) = J dw f dw' at (w')a(w) exp[i(w' - w)t] . (6.160)

We see from (6.160) that the expectation value of at(t)a(t) is given by the
expectation value of the photon flow operator (6.156) when the operators at
different frequencies are uncorrelated.

A few remarks as to the meaning of the Fourier transform pair are ap-
propriate. The operator a(w) has the time dependence exp(-iwt), where the
frequency w is positive. The Hermitian conjugate creation operator has the
time dependence exp(iwt). Fourier transforms are normally defined as rela-
tions between functions of time and functions of frequency which extend over
the entire frequency range from minus infinity to plus infinity. The quantum
operator a(w) is defined only for positive frequencies. As long as the spectrum
of wo is clustered around a carrier frequency w0, the analysis is self-consistent.
We shall discuss this issue in more detail in Chap. 12.

The equation for the excitation of the reflected wave is

b=-a+r-Ile U. (6.161)

ppendix A.9 connects the reservoir analysis of Sect. 6.5 with (6.155) andA
(6.161).
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Equation (6.155) is a linear operator equation. In solving a linear differ-
ential equation no commutators of the operators appear. For this reason the
solution of a linear operator equation is indistinguishable from the solution of
its classical, c-number counterpart. We solve (6.155) in the Fourier transform
domain by assuming a time dependence of the form exp(-iwt):

_ 2/Tea(w)
U( ) 6 162w

i(wo - w) + 1/Te *
. )(

The commutator of the resonator excitation is

[U( Ut( ] _ (2/Te)[p(w),at(w')]w) w )

[i(wo - w) + 1 /T,] [-i(W0 - w) + 1/-re]
(6.163)

e

[(we -W)2 +
1/Te127fS(w

where we have used the commutator relation (6.158). The resonator com-
mutator has become a function of frequency. This is a consequence of the
boundary conditions imposed on the resonator mode. Commutators of exci-
tations within enclosures do not have unchanging universal properties. Thus,
for example, if one introduced partially transmitting irises into a uniform
waveguide to form a transmission resonator, the commutator spectrum of
the excitations internal to the resonator would change. This is analogous to
the change of the thermal excitations in equilibrium when partially transmit-
ting irises are introduced into a uniform waveguide. The thermal excitations
peak around the resonance frequencies, and are much smaller in the frequency
regimes between the resonances.

The double integral over frequency of the resonator mode commutator
gives unity:

f &,) f dw'[U(w), (J t(w')I

[(we _ w)2 + 1/Te ] 27r
4W - w') = 1 .

(6.164)

Since the reflected wave is generated by the incident wave via interaction
with the resonator, it is not obvious that the commutator of the reflected wave
has remained unchanged. On the other hand, we have emphasized that the
commutator of an excitation amplitude of a wave in an open waveguide is a
property of the wave and should not change under any circumstances. Hence,
conservation of this commutator serves as a check on the self-consistency of
the theory. Let us check the value of this commutator. We find for 6(w), using
(6.161),

6(W) =
i(w - w,,) + 11-r,

a(w) . (6.165)
-i(w - w0) + 11-r,,

2/T 1
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It thus follows that

d(w - w')[6(w), 61 (w')] = [&(w), at (w')] = 27r
(6.166)

Thus, the commutator of the reflected wave has indeed retained its proper
value.

We can now show how the introduction of loss can be handled smoothly
with the present formalism. If loss is introduced, the equation of motion
(6.155) has to be modified in two ways: (a) a decay rate 1/ro has to be
introduced; (b) in order to conserve commutators, a noise source must appear.
Thus (6.155) changes into

=-(iwo+1/Te+1/ro)U+ ono+ T a. (6.167)

In the present perturbational approach one may turn on one perturbation at
a time and check for self-consistency. Thus we may ignore the coupling to the
outside waveguide and look at the truncated equation

dt
=-(iwo+1/ro)U+U ono. (6.168)

The noise source must maintain the commutator of the resonator excita-
tion, which in the absence of the noise source would decay at the rate 2/To.
From (6.167) we find

d6l

dt [U' Ut] = L dt , Ut] + [0, dd t J
(6.169)

_ 2
[U, V(it]+ {[no, U] + [U, no]}

To
.

Since the loss is frequency independent, the noise source has to be delta-
function-correlated in time. Whereas one might expect that the resonator
excitation and the noise source commute, since they are independent, this fact
does not reduce the second term in (6.169) to zero. Indeed, within the time in-
terval At, the resonator amplitude acquires the contribution (1/2) 2/Toot n
from the noise source, so that the right hand side of (6.169) becomes

-
TO

[U, Ut] +
V To

{[no, Ut] + U, no]}

(6.170)

_ -T [U, Ut] +
TO

'At[no, no]
TO

Thus, conservation of commutator brackets is ensured for a noise source with
the commutator
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[no(t), no(t')] = 5(t - t') . (6.171)

In the Fourier transform domain, the commutator is

[,h. (LO), ft. P')] = 1 6(w - w') (6.172)

The approach taken here has some resemblance to the introduction of
noise sources in the classical analysis of linear systems at thermal equilibrium.
Note that we could have started with (6.155), treating a as an undetermined
noise source required to maintain commutator conservation in the presence
of the decay rate 1/Te. An analysis identical to the determination of the
commutator of no would have led us to find (6.158) for the commutator
[a(w),at(w')]. Thus, the conservation-of-commutator principle can replace a
detailed analysis of loss induced by coupling to a reservoir.

The next step we undertake is to introduce gain into (6.155). The fact
that one may make statements about the nature of the noise source in this
nonequilibrium case has no classical thermodynamic analog. Again, we look
at the truncated equation for the resonator with nothing but gain, represented
by the growth rate 1/Ty:

dU_
dt - (iwo - 1 /T9) U + 2 ns (6.173)

Tg

The analysis is completely analogous that carried through in the case with
loss, with the result that the commutator of the noise source is now

[ny(t), f191 (t')] _ -6(t - t') , (6.174)

or, Fourier transformed,

[n9(w),ny(w')] _ -w') . (6.175)

Note the appearance of the minus sign. This means that the roles of the
creation and annihilation operators have been reversed. We should note fur-
ther that (6.174) and (6.175) do not require that ny(t) be a pure creation
operator; it could be composed of a sum of a creation operator and an annihi-
lation operator that commute with each other. The only requirement is that
the commutation relation of the sum operator and its Hermitian conjugate
obeys (6.174) or (6.175). The physical meaning is that the gain mechanism
consists of two opposing processes, one with gain, the other with loss. Gain
is provided by a two-level system with inversion, in which the occupation of
the upper level is higher than that of the lower level. The upper level expe-
riences induced emission, in which a photon causes a transition to the lower
level; it also experiences spontaneous emission, in which a laser particle spon-
taneously decays to the lower level, emitting a photon that is uncorrelated
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with the induced photons. The lower level can absorb photons as particles
in the lower level make transitions to the upper level. In this case the gain
mechanism must be represented by a sum of a creation operator nu, rep-
resenting the excitation of the upper level, and an annihilation operator ne,
representing the excitation of the lower level. The upper level causes a growth
rate 1/7-u, the lower level a decay rate 1/Te. The net growth rate is

1 1 1
T9 = Tu

Te
'

and the commutators of the two noise sources are

(6.176)

[nu(t), nu(t')] = -5(t - t') and [ne(t), ne(t')] = 5(t - t') . (6.177)

This description of an incompletely inverted medium is indistinguishable from
the case of a perfectly inverted medium in a resonator with a loss rate 1/T° _
1 /Te.

We may now assemble all three physical mechanisms studied thus far in
one single equation for the resonator mode:

dt
+1/T°-1/Ty+l/Te)U+1/ 2+ I2 hg+2&.

T° T Te
VV v 9 V

(6.178)

The equation for the excitation of the reflected wave remains unchanged.
It is easily checked that the commutator of the reflected wave, (6.161), is
preserved, as it should be, in the presence of all three noise sources, which
are all mutually uncorrelated and commute.

Equation (6.178) can be used to evaluate the photon number inside the
resonator. These photons represent amplified spontaneous emission if no sig-
nal is fed into the resonator. At this point we must decide on the states of
the different noise sources, or rather the reservoirs they represent. If there
were thermal excitation, it would be near room temperature 0°. The en-
ergy levels under consideration are optical levels, with energies of the or-
der of 40 times the value of k0°. Thus, one may assume that the noise
sources are all unexcited; they are in the ground state. This means that
(&t(w)&(w')) _ (ht (w)n°(w')) = 0. On the other hand, we have identified
the operator fig as a creation operator and its Hermitian conjugate as an
annihilation operator. Since

([ng(w), (ng(w)n9(w')) - (n9(w)ng(w')) = w')

we must conclude that

(ng(w)ng(w')) 2-5(w - w') .

We have
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(Ut zw'

(2/T9)(ny(w)n9(w'))Qw ZW'

[-i(w0 - w) + 1/To - 1/T9 + 1/Te][i(wo - w') + 1/To - 1/Tg + 1/Tel

_ 1 2/Tg

27r [-i(Wo - w) + 1/To - 11Tg + 1/Tel [l(wo - w') + 1/To - 1/Tg + 1/Te]

XQWQW S(w-W').
(6.179)

Since the photon flow rate is expressed as a double integral over frequency,
the photon number in the resonator is also obtained from a double integral:

f dwJ dw'(Ut(w)(J (w'))

1 2/Tg

- 27r L(W0 - W)2 + (1/To - 1/T9 + 1/Te)21

1 /T9

1/To - 1/Tg + 1/Te

(6.180)

Next, we consider the photon flow (bt(w)b(w')),Aw Aw' from the resonator
with gain. We limit ourselves to a perfectly inverted medium. We find

(bt (w)b(w')) L1w LXw'

_ 2

Te w) + 1/To - 1/T9 + 1/Tel [i(wo - w') + 1/To - 1/Tg + 1/Te]

4/TeT9 LW

(Wo - W)2 + (1/To - 1/T9 + 1/Te)2 27r

The net photon flow is

J
dw f(t(w)&(w'))

_ 1 4/TeTg

- 27r (Wo - W)2 + (1/To - 1/T9 + 1/Te)2

2/(TeT9)
- 1/To - 1/T9 + 1/Te

(6.181)

(6.182)
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This is the photon flow of the amplified spontaneous emission for a fully
inverted medium in the presence of resonator loss. The flow of photons goes
to infinity as the threshold is reached, as 1/T9 -- 1/To + 1/Te. It is clear that
this trend cannot persist when the threshold is passed. In Chap. 11 we look
at the "lasing" operation of the resonator, the operation above threshold.

-4 -2 2 4

(W-NO)te -

Fig. 6.4. The spectrum 27r(JUt(w)(J(W)J)ZXW/Te for Te/Ty = 0.2, 0.4 and 0.6

Figure 6.4 shows the spectrum of the photon flow for three different values
of -re/T9, with no loss in the resonator, i.e. 1/To = 0. Next we study the in-
phase and quadrature components of the wave emitted by the resonator. The
in-phase and quadrature components are Hermitian operators that have to
be constructed from the sum and difference of b and bt. We have

b(1) = &(1)
1

2/T
2/Tona(w) + 2/T9n9(W) + 2/Tea(W)

+ H.c.
2

e 1(W - WO) + 1/To - 1/7-9 + 1/7-e

1 +
1

TO T9 Te

2/To7lo1)(W) + I rgh(i)(W) + /TeCI(1)(W)
X

V 're (W - Wo)2 + (1/7-o - 1/T9 + 1/Te)2

- (W - Wo)
2To1Z2) (W) + 2/T9112) (W) + 2/Tea(t) ( )

Te (W - WO)2 + (1/TO - 1/T9 + 1/Te)2
(6.183)

where "H.c." stands for "Hermitian conjugate". It is of interest to note that
the quadrature component couples to the in-phase component off resonance.
This phase-to-amplitude coupling is, in fact, characterisic of all resonant
structures excited off their resonance frequency. FM detectors are constructed
on this principle.
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From (6.183) and the mean square fluctuations of the noise sources, one
may construct the mean square fluctuations of the wave emitted from the
resonator:

(16,1)12)

_ 1 1 1 1 2/Te

{ 1 (r° T9+Te (W-Wo)2+(1/To-1/Tg+1/Te)2

+
1)2 2 2/To+2/T9C1 - 1

To Tg + Te Te [(W - Wo)2 + (1/To - 1/T9 + 1/Te)2]2

1'

+(W-Wo)22
2/To+2/Tg+2/Te 1 - W')

27rTe [(W -W,,)2 + (1/To - 1/Tg + 1/Te)2]2

_ /(e g) i
4 L1+ (W - W)2 + (1/ToT 1/Tg + 1/Te)2

27ra(W

(6.184)

The same result is obtained for (16(2)12)
. The physical significance of the

result is plainly evident. If there is no gain in the resonator, the exterior
fluctuations are zero-point fluctuations. If there is gain, the fluctuations at
and near the resonance frequency are enhanced. Away from resonance, they
revert to simple zero-point fluctuations.

6.12 Summary

We started with a review of the classical Hamiltonian mechanics of the har-
monic oscillator and reviewed its quantization. The quantization of electro-
magnetic fields uses the fact that electromagnetic modes obey harmonic-
oscillator equations. It was Planck who arrived at this quantization procedure
with great ingenuity, long before the quantum formalism was developed. The
excitation of the waveguide is described by creation and annihilation oper-
ators that are in one-to-one correspondence with the classical complex am-
plitudes of the electric field of the mode. These operators obey commutation
relations that are intrinsic to their nature.

We developed the quantum formalism for a cavity coupled to an external
waveguide. The decay of the cavity mode was derived from the coupling of
the cavity mode to an infinite number of modes in the coupling waveguide,
assumed to be so long that the period of the beats, associated with the
coupling of two lossless modes was extended to infinity and the effect of the
coupling appeared as a simple decay of the resonator mode. The analysis
introduced automatically an operator source that ensured conservation of
the commutator brackets of the resonator mode operators.
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Next we addressed loss in a waveguide. Having learned that coupling to
a reservoir of modes that introduces decay calls for an operator noise source
in order to ensure commutator conservation, we introduced such a source
and determined its commutator. It was then possible to evaluate the mean
square fluctuations of the mode field under the assumption that the reservoir
modes were in their ground (vacuum) state. The analysis was carried through
analogously for a waveguide with gain. Here, it was possible to show that an
amplifier must emit photons even in the absence of an input signal, namely
the photons of amplified spontaneous emission.

Finally, we quantized the classical equations of a resonator with loss and
gain coupled to an external waveguide. This description was in full agreement
with the Hamiltonian description of a resonator coupled to a reservoir of the
modes of a long waveguide developed in Sect. 6.5. The simplicity of the
formalism permitted us to obtain answers to a number of questions as to the
photon flow emitted by such a structure and the mean square fluctuations of
the in-phase and quadrature components of the emitted field.

Problems

6.1 Show that the states of the harmonic oscillator are orthogonal.

6.2 Show that different Hermite Gaussians are orthogonal.

6.3

(a) Determine the enhancement of the ASE associated with incomplete in-
version as described in Sect. 6.6, by taking advantage of the equations
with perfect inversion, but with an additional loss rate. This additional
loss rate may be identified as being due to occupation of the lower lasing
level.

(b) Derive the photon flow for a resonator of zero resonator loss containing
an incompletely inverted medium.

6.4* Derive the mean square quantum fluctuations of a coherent-state wave
transmitted through a transmission resonator with coupling rates 1/Tel and
1/Te2 and an internal loss rate 1/To.

6.5* A wave incident from port (1) onto a beam splitter with the scattering
matrix

r 1 1 - r2
S- [i 1-r2 r

exits partly in port (3) and partly in port (4). As viewed from ports (1) and
(3), the system appears as a lossy system. Conservation of the commutator
brackets requires the addition of noise. Show that the amplitude operator
entering through port (2), with part of it emerging in port (3), fully accounts
for a "source" that preserves commutators.
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6.6 Show that the formalism of Sect. 6.5 that arrives at the equations of an
open resonator and the associated noise sources by coupling to the modes
of an external waveguide can be used to derive the equations for a classical
resonator at thermal equilibrium. Compare Appendix A.9.

6.7 Show that the transmission of power through a transmission resonator
for a coherent state 1c) of frequency w incident from port (1) is in one-to-one
correspondence with the transmission of power through a classical resonator.

6.8* Show that for any pair of operators A and B the following relationship
holds:

Aexp(B)A-1 = exp(ABA-1) .

Solutions

6.4 This solution uses a generalization to the two-port resonator of Prob.
2.8. Otherwise it follows closely the derivation of Sect. 6.11. The equation of
the resonator mode is

dil _-(iwo+
1 + 1 + 1 U+-al+-a2+2 no (1)

dt \ Tel Te2 To ) V Tel Te2 To

With an assumed time dependence exp(-iwt), we find

II (w) -
2/T2a2 + 2/Ton.

1(wo - w) + 1/Tel + 1/Te2 + 1/70

The excitation of port (2) is

b2 = -a.2 +
Te2

and therefore

(2)

(3)

Y

b2(W) = -a2(w) + 2/Telal(W) + 27Te2a2(w) +

Te2 i(wo-W)+1/Tel+1/Te2+1/To

The mean square output for the two phases is

(b22) (w)b22)(w'))
, where i = 1,2

(4)

(5)

Since the input is in a coherent state, all operator products should be put
into normal order. Then, only the contribution of the commutator remains:
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(b2=) (w)b2x (w)) 1

1

I

2 2/T 2 2/T
4

27rJw - w 1 -
Te2 (w - w0)2 + 17T2 + Tee (w - wo)2 + 1/T-2

4
21r8(w

where
1 1 1 1

T Tel Te2 To

We get standard zero-point fluctuations. This is as expected, since in the
absence of laser action, a wave in an open waveguide must exhibit standard
fluctuations.

6.5 The equation for the output in terms of the input is

B3=rA1+i 1-r2A2.

The commutator of the output wave is

[B3, B3[ = r2 [A1, A1] + (1_ r2) [A2, A2] = 1 .

Thus, (1) written as

B3 = rAl + 1V

has acquired a noise source with the proper commutator:

(1)

(2)

(3)

[N, Nt] = 1 - r2 . (4)

6.8 The identity is proven by expanding the exponential into a power series
Bn

A exp(B)A-1 =AE-A-1.
n!

Consider one term in the expansion. We have
ABnA-1 = ABA-1 ABA-1 ABA-1... n times.

By introducing this identity into the series, we prove the assertion.



7. Classical and Quantum Analysis
of Phase-Insensitive Systems

In Chap. 6 we investigated the quantization of open resonators and of waves
on transmission lines. We treated one example of a simple linear system,
namely a resonator coupled to a waveguide. Practical electromagnetic sys-
tems consist of RLC circuits, resonators, waveguide junctions, fibers, beam
splitters, and, of course, amplifiers, to name only a few. Such systems, if lin-
ear, are described classically by impedance matrices or scattering matrices
(Chap. 2) that are functions of frequency. This formalism is well developed
in the classical domain. In this chapter, we review the classical formalism
and its generalization to quantum theory. We define Hamiltonians which, via
the Heisenberg equations of motion, lead to equations that are in direct cor-
respondence with the classical circuit equations. If the multiports are lossy
or exhibit gain, they must contain noise sources in order to conserve com-
mutator brackets from input to output. The commutator brackets determine
the minimum amount of noise added to the signal as it passes through the
network. Hence one may determine the optimum noise measure achievable in
a quantum circuit directly from these relations.

Amplifiers with high gain provide a signal level at their output that is
"classical", which, for example, can be viewed on a scope without any am-
bivalence as to what is being observed. Two observables whose operators do
not commute cannot be measured simultaneously. Yet, in a classical display
one may view observables whose operators do not commute, such as the in-
phase and quadrature components of the field amplitude. We shall show that
these can be observed simultaneously, but that the simultaneous measure-
ment of both observables is accompanied by a penalty of additional noise.

The Heisenberg equations of motion of the field operators have a close
correspondence with the classical equations of motion of the complex field
amplitudes. This is the correspondence principle that requires the emergence
of classical equations of motion for observables when quantum effects can
be neglected. The Schrodinger formalism, which expresses the time evolution
of the states rather than of the operators, does not display the correspon-
dence principle directly, since quantum states have no classical counterpart.
Conversely it is also true that the Heisenberg equations of motion do not
directly display quantum behavior, such as that contained in so-called entan-
gled states. Entangled states are a wellspring of paradoxes associated with
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quantum measurements. In preparation for their discussion in Chap. 14, we
study the peculiar properties of entangled states, using the Schrodinger for-
malism.

7.1 Renormalization of the Creation
and Annihilation Operators

In the analysis of waveguides, we found it convenient to use the operators
a(/3) and at (/3) for the mode amplitudes, essentially a spectral representation
in /3 space. In this chapter, we analyze multiports excited by several wave-
guides that may have different dispersions: modes of the same frequency have
different 0 values in the different waveguides. In linear multiports, modes
of the same frequency in different input waveguides couple to each other,
and modes of different frequencies do not. Hence, the modes entering from
the different waveguides must be identified by frequency, not propagation
constant. There is a further problem. The quantization in a waveguide was
done for modes occupying a length L. In the excitation of a multiport from
different waveguides within a narrow band of wavelengths and/or frequencies,
the excitations from the different waveguides enter the multiport, interact,
and leave. They do so moving at their own group velocities. The lengths L in
the different waveguides must be in the inverse ratio of their group velocities
to be properly synchronized. For this reason it is appropriate to use operators
that do not depend on these length assignments. The operators are redefined
as follows. Remember that the photon number within the length L was given
by

Am Am ,

with the commutation relation

[Am, Ate] = j,,,

The photon number can be converted into a photon number flow by division
by L and multiplication by the group velocity

photon flow =
vg

A;nA, = 1 vga/3 At Am = A,t,LA,,,, 4'-01 , (7.3)
L 27r 27r

where Awq = vg o/3 is the interval of quantization. We introduce the new
notation

Am
wg

(7.4)
27

These new operators, assigned to a frequency w and the frequency interval
QWq, obey the commutation relation
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eat] =a (7 5[ , . a)

when a and at have the same frequency, and

[a, a1J = 0 (7.5b)

for a's of different frequencies.
Operation on a coherent state by a, still an eigenstate of a, gives the result

a7r aIa) ,

so that the expectation value (aIataja) is

(alathla) = L 10,12

i.e. the photon flow of the coherent state. Strictly, a coherent state has a
bandwidth. The state is defined over a length L, and hence a time interval
T = Llv9. Outside this time interval another coherent state is defined, and
hence the duration of the coherent state is T = 27r/,Awq. If communication
is performed with a sequence of coherent states, and the noise accompanying
the signal is to be properly filtered, a filter bandwidth 4w must be chosen.
In the subsequent analysis it will be assumed that the signal bandwidth and
noise bandwidth are made equal, and we shall drop the subscript "q" on 4w.

7.2 Linear Lossless Multiports
in the Classical and Quantum Domains

Consider the excitation of a linear multiport from N waveguides as shown in
Fig. 7.1. The excitations of the waveguides at one frequency may be written
in terms of the N incident waves aj and the N reflected waves b3. Because the
circuit is linear, the bti are related linearly to the aj and no other frequency
components are generated by the excitation of the circuit. We form column
matrices of the excitation amplitudes ai and b; . The multiport is described
by the N x N scattering matrix S and the following relation holds:

b=Sa+s, (7.8)

where s contains the noise sources. A passive multiport at thermal equilib-
rium requires such noise sources in order to conserve the thermal radiation
from input to output. The spectra of these noise sources were evaluated in
Chap. 4.

In this section, we look first at some lossless multiports. Lossless multi-
ports have no internal noise sources and the scattering equation simplifies
to
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Fig. 7.1. A linear multiport excited by incident waves a3

b = Sa,

where S is a unitary matrix. One of the simplest two-ports is a lossless,
partially transmitting, mirror with amplitude reflection r (see Fig. 7.2). Its
scattering matrix must be unitary, as proven in Chap. 2. Such a mirror must
also be reciprocal since it is described by the reciprocal Maxwell's equations.
The reciprocity condition implies symmetry of the scattering matrix (Chap.
2). The unitarity condition for a complex matrix of second rank leads to two
real equations and one complex equation, four real equations in toto. Thus,
the eight real parameters of a complex matrix of second rank are reduced to
six by symmetry of the matrix, and further reduced to three free parameters
by the unitarity condition. Returning to the lossless mirror, we find that
we may choose arbitrarily the reference planes for the incident and reflected
waves, which disposes of two free parameters. Thus, a lossless two-port has
only one real free parameter. In the present case, it is the reflectivity r of the
mirror. Thus, the scattering matrix of a mirror is

r i 1 r2S_- _i,/1 -r2 r (7.10)

How does one describe a mirror quantum mechanically? The wave am-
plitude operators in the incoming and outgoing ports are the quantities a of
the preceding section. The operator is assigned to one mode. Reflection from
the mirror constitutes a scattering event. Incident waves are transformed
into reflected waves. The transformation is described by an integral of the
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a, a2

bi V////l b2

Fig. 7.2. A partially transmitting mirror

Heisenberg equation of motion:

d _ i

dtaj -[H,aj] (7.11)

Since the interaction is linear, the Hamiltonian must be a quadratic ex-
pression in the aj. (Remember the commutator removes one operator factor;
therefore the commutator of an operator with a quadratic Hamiltonian is lin-
ear in the operator(s).) If we suppress the natural time dependence exp(-iwt)
of the operators, we may assume a Hamiltonian of the form

ft = h(M12aia2 + M2ia2a1) , (7.12)

where M12 = M21, because the Hamiltonian is Hermitian and thus M12 =
Me`B, M21 = Me-i° with M real. In (7.12) we have omitted the contribution
of zero-point fluctuations, since it does not affect the equations of motion.

The equations of motion are

d
dtal = -iM12a2

d
da2 = -iM21a1

(7.13)

(7.14)

The solutions of these equations are the functions exp(-iMT). The meaning
of this exponential with a matrix as its argument is extracted from the Taylor
expansion. Its first-order term is

rr 1

[eoio-iM2
1 012T8ie 0MT.

Its second-order term is
1 0 M12 0 M12 T2 1 M12M21 0 T2
2 M21 0 1 M21 0] 2 0 M21 M12,

= -1 l M2T2 .

2 101 1
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It easy to see that the Taylor series gives the solutions

exp(-iMT) = [-ie-
Osin(MT)

-lcos(sin(MT)

MT) ,

and thus

(7.15)

al(T) cos(MT) -ie`Osin(MT) al(0)&2(T)] _ -ie sin(MT) cos(MT) ) [a2(0)J
(7.16)

The excitations after evolution over the time T must be interpreted as
the outgoing waves bl and b2. Thus we find correspondence with the classical
scattering matrix of the mirror, with r = cos(MT) and 8 = 0. The quantum
analysis implies losslessness, but not necessarily reciprocity, and thus it ends
up with an arbitrary phase angle, which can be removed from the classical
scattering matrix on the basis of reciprocity.

After this simple example of a two-port we may turn to the analysis of a
general lossless multiport of N ports by considering the Hamiltonian

ft = hatMa, (7.17)

where M is an N x N matrix. Here we have arranged the operator excita-
tions into column matrices. The dagger indicates the Hermitian conjugate of
the operator as well as the transpose of the column matrix. The Heisenberg
equation of motion becomes

dt
a = -iMa . (7.18)

Integration of the equation over a time T gives the scattered waves b in terms
of the incident waves,

b=Sa, (7.19)

with the scattering matrix

S = exp(-iMT) . (7.20)

It should be noted that the input and output excitations in the quantum
case refer to photon packets, whereas classically the excitations are travel-
ing waves. If the group velocities in the different waveguides are different,
the packets occupy different lengths, the lengths being in the ratio of the
respective group velocities.

Let us look at an important example of a lossless four-port, a beam splitter
(see Fig. 7.3). This schematic shows which excitation from each port makes
it to some other port. An input excitation in port (1) exits from ports (2)
and (3), an excitation in port (2) exits from ports (1) and (4), etc. Only two
numbers, the reflection r and a phase 9, describe the whole operation, because
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a,
0(1)

a4

(4)

Fig. 7.3. Lossless beam splitter

the four-port has to obey the conditions of reciprocity (i.e. have a symmetric
scattering matrix) and power conservation (it must be unitary). If arbitrary
phases are removed by proper choice of the positions of the reference planes,
then the beam splitter is described by the following scattering relation with
a symmetric unitary matrix of fourth rank:

bl

b2

b3

b4

0 r -i 1 - rte-'B 0 al
_ r 0 0 -i 1 - r2e`O a2

-i 1 - rte-'B 0 0 r a3
0 -i 1 --r 2 e ie r 0 a4

(7.21)

both classically and quantum mechanically. In the latter case, the amplitudes
become annihilation operators. The scattering matrix of the beam splitter
(7.21) applies equally well to a waveguide coupler propagating forward and
backward waves, as shown in Fig. 7.4. The waveguide coupler is a lossless
four-port. A forward wave couples gradually to a copropagating wave in the
adjacent waveguide without coupling to the backward-propagating waves.
Backward-propagating waves couple in a similar manner to each other. Using
the fact that forward- and backward-propagating waves do not couple to each
other, and the constraints imposed by losslessness and reciprocity, we arrive
at the scattering matrix of (7.21).

The appearance of the operator evolution (7.19), in which an operator is
premultiplied by a unitary matrix, is a bit surprising to those of us who know
that, in the Heisenberg representation, the time evolution of an operator is
described by pre- and post-multiplication of the operator by a unitary matrix.
In the next section, we show that the two approaches are consistent when
applied to linear lossless multiports.
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a,
b

ba 2

2

a4 b3

b4 a3

Fig. 7.4. Lossless waveguide coupler

7.3 Comparison of the Schrodinger and Heisenberg
Formulations of Lossless Linear Multiports

Thus far we have quantized guided waves and resonant modes using the
Heisenberg representation. The Heisenberg representation is in strong corre-
spondence with classical field theory. If the system is linear, the mode an-
nihilation operators evolve in time in the same way as the classical complex
field amplitudes. Wave functions describing the state of the system are used
only when expectation values of the operators are evaluated. Further, the
wave functions used to find the expectation values are those of the initial
states of the operators. The time evolution of the system is contained fully in
the time evolution of the operators. This description has the advantage that
the correspondence principle is rendered self-evident. It has the disadvantage
that it does not display explicitly effects that are inherently quantum me-
chanical, such as the strange behavior of entangled states. Of course, such
quantum effects are still contained in the theory and can be extracted from
the expectation values of the field operators. When these peculiar quantum
effects are present, then the expectation values of the moments of the field
operators cannot be predicted from classical probability considerations.

In the Schrodinger representation, the operators are time-independent;
the wave functions evolve in time. The correspondence principle is not self-
evident, since wave functions have no place in classical physical theory. On the
other hand, entangled states, which are a wellspring of paradoxes associated
with quantum mechanics, emerge clearly in this representation. In fact, we
present the Schrodinger formalism with the intent to use it in Chap. 14 to
elucidate the behavior of entangled states and to present a resolution of the
Schrodinger cat paradox.

The evolution of the wave function in the Schrodinger representation is
given by

i')(t)) = U(t)jvo)) (7.22)

where U is a unitary operator related to the Hamiltonian by
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U(t) = exp C - Ht I . (7.23)

The transition between the Schrodinger and Heisenberg representations fol-
lows from the expression for the expectation value of an operator. Taking the
annihilation operator A(t) as an example, we evaluate its expectation value
from the wave function 1,0(0)) in the Heisenberg representation:

((o)IA(t)W'(0)) = (V,(o)IUt(t)A(o)U(t)lV(o)) = ((t)IA(o)10(t))
(7.24)

This equation shows that either one may use the Schrodinger evolution of
the wave function as in (7.22), keeping the operator of the observable A at
its initial value A(O), or one may vary the operator according to the law

A(t) = Ut(t)A(0)6,(t) . (7.25)

This approach can be extended to column matrices of observables. To indicate
the transition to column matrices we write the operators in bold type:

Al

A2

AN

=A. (7.26)

The unitary operator U involves the Hamiltonian of the entire system:

N

H=h E (M2ICAAk+).
j,k=1

(7.27)

The unitary evolution matrix has the form of (7.23) and remains a scalar,
rather than becoming a column matrix. The input state 10) is now a product
state:

j=N

10(0)) =1'1(0)) 0 102(0)) ® ... (9 1ON(°)) = II IVGj(°))
j=1

In the Schrodinger formalism, the state evolves according to the law

10(t)) = U(t)I0(0))

(7.28)

(7.29)

In the Heisenberg formalism, the column matrix operator A evolves according
to the law

A(t) = Ut(t)A(0)U(t) . (7.30)

If the time evolution extends over a time interval T, the operator A(T) is
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A(T) = exp[iAt(0)MA(0)T]A(0)exp[-iAt(0)MA(0)T] . (7.31)

From now on we denote by the operator a its value at t = 0. In the notation of
(7.19), A(T) = B, and hence the pre- and post-multiplication by the unitary
operator ought to be equivalent to premultiplication by the scattering matrix.
This equivalence is not obvious at first glance, but we now proceed to prove
it. For this we need an operator identity.

Consider the following function of the c number containing the operators
Q and R:

f ( ) = exp(6R)0exp(-6R) . (7.32)

We may expand this function of 6 into a Taylor series in 6. For this
purpose, evaluate d f

df = R )R = [R, f (e)] .

(7.33)

Repetition of this procedure gives the Taylor expansion

2 2"

(7.34)

= Q + [R, Q] + 2 [R, [R, (l]] + ... .

Note that the right hand side of (7.31) is of the form of f with R =
At MA, Q = A, and = iT. Thus, using the result just obtained and
noting that

[ALMA, A] = [AfM2jA Ak] = Mz9(AtAJAk - AkAT Aj)

= -Mi,6ikA; = -MkjA; ,

(7.35)

we find that the commutator is equal to -MA. Repeating the same algebra,
we find

[R, [R, Q]] = M2A , [R, [R, [R, Q]]] _ -M3A , (7.36)

and so forth. Hence

A(T) = A - (i/1!)MTA - (1/2!)(MT)2A + (i/3!)(MT)3A .. .

= exp(-iMT)A .
(7.37)
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Thus, we have recovered (7.19). The present exercise confirms the legitimacy
of multiplying an excitation operator from one side with a unitary operator to
describe its time evolution in a linear system, whereas when the Heisenberg
formulation is first encountered, the time evolution of an operator is described
by pre- and post-multiplication of the operator by a unitary matrix and its
Hermitian conjugate, respectively.

7.4 The Schrodinger Formulation and Entangled States

Thus far, we have used the Heisenberg representation to describe the effects
of optical elements on the annihilation operators, stand-ins for the classi-
cal complex field amplitudes. The Heisenberg representation of optical phe-
nomena takes the form of classical equations of evolution of the observables
represented by the operators. In the Schrodinger representation, the wave
functions change, and not the operators. It is of interest to compare the two
approaches. We may follow the change of the wave function through a phase
shifter or beam splitter, just as we have followed the change of the annihila-
tion operator through a phase shifter or a beam splitter.

Let us consider first the action of a phase shifter. Since we shall analyze
operations on number states, it is convenient to revert to the annihilation
and creation operators A and Al, which have the simple properties of (6.44)
and (6.45) when operating on a number state. We shall omit the subscript in.
In the Heisenberg representation, an excitation described by the annihilation
operator A, when passed through a phase shifter producing a phase shift 0,
is described by multiplying A by exp(iO). We have seen that this operation is
equivalent to a pre- and post-multiplication of the operator by exp(-iOAtA)
and exp(iGAtA), respectively. This means that, in the Schrodinger represen-
tation, the wave function is multiplied by exp(iOAtA). Consider first the case
of a coherent state (ca). Detailed evaluation gives

ex iOA A a e- ex i9A A n n

=
e-'IaI2/2

exp(i9n)
and

In) (7.38)
n=0

e-1I a12/2 E (ei0 )n In) = Ie;ea)

n=O
nl

Thus, the passage of a coherent state through the phase shifter transforms
the state Ia) into the state Ie10a). The result is simplicity itself. Indeed, the
complex parameter a of the coherent state describes the endpoint of the
phasor in the complex plane, in one-to-one correspondence with the complex
amplitude of the electric field. This amplitude behaves classically.
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Next, consider the transformation of a photon state 11) or 10) by a phase
shifter. We have

exp(iOAtA)j1) = exp(iO)11) . (7.39)

Even though the photon state 11) does not have a well-defined phase, pas-
sage of the photon state through a phase shifter does impart a phase shift.
Interference of the photon state with its phase shifted version can lead to
interference fringes. In a similar way we have

exp(iGA1A)J0) = 10) . (7.40)

The ground state remains unchanged. This shows that the ground state is
unaffected by a phase shift, because it cannot lead to interference with itself.

Next, we take up the operation of a beam splitter. A beam splitter is
described by the Hamiltonian

ft = h(MAtB + M*BtA)

Integration of the Schrodinger equation of motion

ddt) = -hH1'p)

gives

(7.41)

(7.42)

I b(T)) = exp (_uiT) X0(0)) . (7.43)

For convenience we choose M real and positive. In order to simplify the
notation, we write

H T = O(AtB + BtA) , (7.44)

where 0 = MT. Let us start with a single photon in port (1) and vacuum
fed into port (2). Then, the input state is

IL(o)) = 11) (D 10) (7.45)

The output is obtained by expanding the exponential into a Taylor series

n=oo \ n
E n!C-hHTI 11)®10)
n=O

(7.46)

1:
(-io)n

(AtE + BtA)n11) ®10) ._
n!

n=O
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Now consider the effect of the operation (AfB + BtA)n on the product
state 11) (9 10), where the operators A and At operate on 11) and the operators
B and Bt are applied to 10). We have

(AtB+BtA)I1)®10)=10)(g 11). (7.47)

In a similar way we find

(AtB + BtA)211) (& 10) = 11) 0 10) . (7.48)

In this way we find

n=oo

JO(T)) = E
n=O

BtA)nll) (& 10)
n!

n=oo (-lla)n
11)

(g
10) +

nfw (-l(p)n1: lo) ®I1)n. n.n=even n=odd

(7.49)

= cos 011) (9 10) - isin 010) (9 I1) .

The output wave function is a coherent superposition of two states, a
simple example of an entangled state. Entangled states have no classical
analog. Let us look at this state in greater detail. Although photon states are
not classical in their nature either, classical language can be applied to many
processes that transform photons. The input is in a product state 11) (9 10).
The density matrix p (Appendix A.10) at the input is the product of two
diagonal density matrices:

P(o) = 11) ® 10)(01o (11 = 11)(11 ® 10)(01. (7.50)

The probability of finding one photon in the input port (1) is the value of the
diagonal element 11)(11, which is unity. Similarly, the probability of finding
zero photons in the input port (2) is the value of the diagonal element 10)(01,
also equal to unity. At the output of the beam splitter, the density matrix is

cost 011) (110 10)(01 + isin 0 cos Oll) (ol (9 10) (11
P(T) = (7.51)

-isinq5cosolo)(11011)(01 +sin2010)(01 ® (11(11

The density matrix is not diagonal, it is made up of a sum that contains
off-diagonal elements 11)(010 10) (11 and 10) (11 0 11)(01. This is the density
matrix of a so-called "entangled state". Measurements on the system can
yield outcomes with no classical interpretation, because the off-diagonal ele-
ments of the density matrix may contribute terms to the expectation values
that "interfere", thus preventing a classical interpretation in terms of the
probabilities of photons exiting in ports (3) and (4). Appendix All looks at
some further operations of the beam splitter.
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The case of coherent inputs into ports (1) and (2) described by

IV)(6)) = Ia) ®1a) , (7.52)

could be analyzed in the same way. However, since the states Ia) and 10) are
not eigenstates of the creation operators at and bt, the analysis gets quickly
out of hand. There is a better way to approach the problem, as is done in the
next section. Suffice it to state here that the operation of the beam splitter
leads to the output wave function

Ik(T)) = I cos Oa - i sin 00) ®l - i sin qa + cos q)3) . (7.53)

The state remains a product state; the complex amplitudes of the coherent
states add like classical complex field amplitudes. No entanglement occurs.

7.5 Transformation of Coherent States

The Heisenberg representation of linear systems transforms incident-wave
operators into outgoing wave operators in a way described by a simple scat-
tering process and bears a close analogy to the classical description. This is
one of the advantages of the Heisenberg representation, since it is one of the
manifestations of the correspondence principle: when the observables are ex-
pressed in terms of operators, the equations of the operators assume the form
of classical equations of motion. The correspondence principle is not obtained
as easily in the Schrodinger representation. Yet, it is of interest to derive it
in this representation as well, since then we can show what input states bear
the closest analogy with classical physics. In his seminal paper, Glauber [66]
introduced expansions in terms of coherent states with the intention to clar-
ify the correspondence between classical optics and its quantum description.
"Such expansions have the property that whenever the field possesses a clas-
sical limit, they render that limit evident while at the same time preserving
an intrinsically quantum-mechanical description of the field." [66]

Consider a linear network represented by the following Hamiltonian in
normal order:

H = (7.54)

where M is a Hermitian matrix, and we use the Einstein summation conven-
tion. Suppose that the input state 10) is a product state of coherent states

1,0)=fjIa.). (7.55)
J

Schrodinger's equation of evolution leads to the differential equation

a IV)) _ hHIO) (7.56)
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The following manipulations are greatly simplified if we introduce the
renormalized states of Glauber [66]

n;

IIaj) = elajl2/2Iaj) =

2L Ins)

(7.57)

These functions have the remarkable property that operation by the creation
operator is equivalent to taking a derivative with respect to a [66]:

AtjIIaj) = aaj Ilaj) , (7.58)

as can be easily confirmed using the properties of the creation operator op-
erating on a photon state. We now assume that a coherent product state
maintains its product character as it evolves according to (7.56). We shall
then show that this assumption is correct and leads to a simple solution of
the Schrodinger equation. The state IV)) of (7.55) can be written

I) = e- E; Ic;12/2 JJ IIaP) .
P

(7.59)

Still following the assumption that the solution can be represented as a prod-
uct state of coherent states, we take into account that energy conservation
ensures time independence of the sum over the squares of the I aj I. The time
derivative of (7.59) is thus

1,0) = e-1«212/2 (ci). IIaP) . (7.60)
at at aaj

P

Next, consider what form the same equation takes when operation by the
Hamiltonian operator is carried out according to the Schrodinger equation
(7.56). When the ansatz (7.58) is introduced into (7.56) we obtain

at
I) _ -iMjkAj Ake-E' Iu'12/2

JJ Ilae)

_ -ie- E; Ia;12/2Mjkak as J II 0,I)
P

We find that (7.60) and (7.61) are consistent when

a
ataj = -1Mjkak

(7.61)

(7.62)

We have found that the complex amplitudes of the coherent states of the
different modes obey linear equations of the same form as the annihilation
operators of the modes. These are the classical equations of motion of the
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mode amplitudes. Our analysis has accomplished several objectives. First of
all, we have found classical equations of motion for the amplitudes of the
coherent states. In this way we have established a correspondence principle
in the Schrodinger picture. Secondly, we have proven that a state constructed
as a product of coherent states remains such a product state as it evolves in
a linear system. Thirdly, since coherent states have Poissonian photon statis-
tics, we have proven that Poissonian statistics are preserved in the scattering
process of a linear system. We shall confirm this result in Chap. 9 using a
different approach.

7.6 Characteristic Functions
and Probability Distributions

In the analysis of linear circuits, such as discussed in Chap. 5, one deals with
amplitudes of the electric field. Hence, in the context of linear circuits one
is interested in the probability distribution of the field. It is clear that the
so-called "characteristic function", defined by

(7.63)

contains all the moments of the electric field. Indeed, expansion of the expo-
nential gives

00

E 2' (En)
n=0

(7.64)

We now turn to the evaluation of the characteristic function of the electric
field, using the creation and annihilation operators:

CW_ ( exp [i(Af + A)]) . (7.65)

An expansion of the exponential/involves products of the annihilation oper-
ators in various orders. This is an inconvenient form of the expansion. The
analysis is greatly simplified through the use of the Baker-Hausdorff iden-
tity [66], which puts exponentials of sums of noncommuting operators into
normal order. If A and B are operators, and their commutator [A, b] is a
c number, then the Baker-Hausdorff theorem states (see Appendix A.12)

z

exp B)] = exp (2 [A, b]
/

. (7.66)

7.6.1 Coherent State

When this theorem is applied to a coherent state 1a) we find
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exp (- 82)
(al exp exp 1a)
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2

exp
(-s-)

exp (-v) a)/2] .

This is the characteristic function of a Gaussian for an E field centered at
Eo = (a* + a)/2. Indeed, using the classical interpretation of the character-
istic function of a field E with the probability distribution p(E), we obtain

J
dE p(E)

exp I - (E exp(i E) (7.68)

a2

exp (-'2

where we have used a Gaussian distribution of mean square deviation a,
centered around E0. We find indeed that the characteristic function of a
coherent state is equal to the characteristic function of a Gaussian with a =
1/2 and centered at Eo = (a* + a)/2. The characteristic function for the
quadrature field (1/2i) (A - At) gives the same kind of expression, with Eo =
(a - a*)/(2i). Let us look at some further properties of the characteristic
function in the classical interpretation. If we expand we have

C() _ J-00
00

dE p(E)
foo

00

dE p(E) E
(lr)mEm

m!
m

_ 1 (1S)m (Em)
m!M

(7.69)

The characteristic function contains the moments of the field as the coeffi-
cients of the expansion.

The expansion of the characteristic function of a Gaussian distribution
with zero average field (E0 = 0) gives

2 m
exp (- 2 2) = (c) a2m (7.70)

Comparison of (7.69) and (7.70) gives zero for all odd-order moments, and
for the even-order moments
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(IEI2m) _ (2m)!a2m
m!2m

(7.71)

Hence, all moments of a Gaussian distribution with zero average field can
be expressed in terms of o,2 . This is why a Gaussian distribution is fully
described by its mean square deviation.

7.6.2 Bose-Einstein Distribution

Next we evaluate the characteristic function of the in-phase field component
for a Bose-Einstein distribution:

10) = EcnIn) ,

with

n

(7.72)

(Cnem) = nmPB-E(n) . (7.73)

In analogy with (7.67) we find

2

exp (-) (V%I exp(ieAt/2) exp(i6A/2)IVi)

= exp (_ S2J (4 I (i At/2)r (i A/2)48 r, q, I>
r q

(7.74)

The characteristic function contains the falling factorial moments Fr of the
Bose-Einstein distribution. These will be derived in Sect. 9.1. Here we use
the result (9.13) of Chap. 9. We find the following simple answer for (7.74):

C() = exp (4) (-1)T
T

= eXp C_ 2\
E(_1)T( 2(n)l4)r

8 r (r!)

C
exp

X2(1 + 2(n))
-

8

(7.75)

According to (7.68), this is the characteristic function of a Gaussian distribu-
tion of zero average field with the mean square deviation Q2 = 1/4 + (n)/2.
The quadrature field of a Gaussian distribution has the same fluctuations.
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7.7 Two-Dimensional Characteristic Functions
and the Wigner Distribution

In the preceding section we looked at the characteristic function of the in-
phase and quadrature components of the electric field. The Fourier transform
gave us Gaussian probability distributions of these components. The Fourier
transformation of the characteristic function of a single observable always
leads to a positive definite function that can be interpreted as a probability
distribution.

Two classical random variables xl and x2 are described by the joint prob-
ability distribution p(xi,x2), which is the Fourier transform of the charac-
teristic function

C''(6, S2) = iS2x2)) (7.76)

Indeed, let us evaluate (7.76) with the aid of the joint probability distri-
bution p(x1i x2):

C(6, S2) = fdxif dx2 P(xl, x2) exp(iSixl + i6x2) . (7.77)

The Fourier transformation of C(6i e2) gives

(27r)2
fd1

J
<2 eXP(-iS1X1 - i6XX(S1, S2)

1
2 f dxl f dx2 J dal <f2p[_i(xi - Xl)

(2.7r)

-i2(x2 - X2)]P(xi, x2)

= fdxi f dx2 b(xl - Xi)b(x2 - X2)P(xi, X2)

=P(X1,X2) .

(7.78)

Thus, the Fourier transform of the characteristic function of two random
variables gives the joint probability distribution.

The characteristic function of two quantum observables xi and x2 is well
defined as

C(6, t2) = (exp(iSl±l + i6±2)) . (7.79)

An expansion of the exponential in powers of S1 and S2 contains terms like
iz i x2) Thus the characteristic function gives full information about

the moments of the observables. However, the Fourier transform of the char-
acteristic function of two noncommuting observables is not always positive
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definite. Even if positive definite, it cannot always be interpreted as a prob-
ability distribution in the classical sense. This is shown by the following
example.

We consider the entangled state produced by a 50/50 beam splitter as
derived in Sect. 7.4. There we found that a beam splitter produces the wave
function

10) = (cos011)1(9 10)2 - isinO10)1(9 11)2) . (7.80)

We have added subscripts as a reminder of the fact that the A operator
operates only on the wave function with the subscript 1, and the B operator
only on the wave function with the subscript 2. For a 50/50 beam splitter
0 _ -7r/4, and

I ) _ (I1)1(9 10)2 - il0)h (9 I1)2) (7.81)

The characteristic function of the photon number at the two outputs is

C'(S1 , b2) = (eXP[i(iAtA + S2BtE)])

= 1(2(OI ®1(11 + i2(1101 (01) exp[i(IAtA + bBtE)]

X(11)1(9 10)2-i10)1(9 11)2)

(7.82)

Thus, we obtain

C(1, e2) =
2

[exP(i 1) + exP(i 2)) . (7.83)

The inverse Fourier transform gives for the probability of the photon numbers
n1 and n2

1 1
p(nl, n2) =

2
for nl = 1, n2 = 0, and

2
for n2 = 1, n1 = 0 . (7.84)

This result seems very "classical": if a photon enters the beam splitter from
the input port (a), it ends up with probability 1/2 in either of the two output
ports. This classical interpretation is, however, misleading. To see this, pass
the output of the beam splitter through another 50/50 beam splitter. The
classical interpretation would say that we pass the photon that ended up
with probability 1/2 in one of the output ports through the second beam
splitter and again it would end up with probability 1/2 in either of the two
output ports. We do the same for the events when the photon ended up in
the second port of the first beam splitter. Again the photon ends up with
equal probabilities in either of the two output ports of the second beam
splitter. Thus the answer is that we see a photon in either of the output ports
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with probability 1/2. The quantum problem arrives at a completely different
answer. Instead of 0 = it/4 in (7.80), the two beam splitters in cascade are
described by 0 = 7r/2. The input photon to the two beam splitters ends up
with certainty in output port (a). This is a consequence of the coherence in
the wave function at the output of the first beam splitter. Wave functions
add, not probabilities!

The quantum nature of a situation emerges when one deals with the
characteristic function of two noncommuting observables. The characteristic
function itself is well defined, since it deals with the weighted moments of an
observable that is the linear combination of the two observables i' l
The Fourier transform of the characteristic function is the Wigner function

=
(1)2 fdi

J C(6, - (7.85)

The Wigner function integrated over one of the two variables is positive
and can be interpreted as a probability

P(xi) = fdx2W(xi,x2). (7.86)

However, if one attempts to interpret the Wigner function as the joint prob-
ability of both observables, one may run into negative values of the function.
The experimental measurement of the Wigner function of particle diffraction
through a double slit has actually been carried out, in which _1 is the the po-
sition 4 and r2 is the momentum p [69]. Appendix A.13 evaluates the Wigner
function for the position and momentum of a particle.

On the other hand, the Wigner function of a coherent state shows no
idiosyncrasies, a fact which reinforces the picture of coherent states as quan-
tum states with a classical character. Let us evaluate this Wigner function
for a coherent state. It is convenient to recast the characteristic function in
terms of creation and annihilation operators. The characteristic function can
be written as

C(ei, b2) _ (exp(rl*A -11At)) , (7.87)

where rl = (1/2i)(e1 + ie2), and where we use the Einstein summation con-
vention. The Fourier transform gives the Wigner function:

z

W (Ai, A2) 2) f dpi f d 2(eXP[i A - Ai)])

(1)21 dz (exp[(A - A) - (At -=

-W(A).
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The two expressions for the Wigner function are equivalent. The first expres-
sion is written in terms of the real coordinates Al and A2 and the Wigner
function is a function in the Al-A2 plane. The second expression uses com-
plex notation and creation and annihilation operators. The integral is a func-
tion in the Al-iA2 complex plane. If one is in doubt about how to carry
out the double integral in the complex plane, one may always resort to the
two-dimensional Fourier integral with real variables.

Note that the integral of the Wigner function over Al and A2 is unity.
Indeed,

fdA1 fdA2W(AiA2)

_ (1)21 dA1 f dA2 f dal fd6(eXpgj(Aj - A,)])

(7.89)

(1)21 dA1 f dA2 fdei f d6
27r)

= f dal f d2 a( 1 .

In this respect, the Wigner function satisfies a condition of a probability
distribution. Let us now evaluate the Wigner function for a coherent state
1a). For this purpose we put the kernel of the integrand in (7.88) into normal
order using the Baker-Hausdorff theorem:

exp[,q*(A - A) - 77(At - A*)]

H2
(7.90)(-A - A*At A* )

)] exp
2

)] exp[rl= eXp[-r7( - (

We evaluate next the expectation value of the kernel:

(-
12Iz1

*(A - A)] eX( (At - A*)] e [i 1a)l [-r xp p )a l ieXp

(7.91)

= exp[-r7(a* - A*)] exp[r7*(a - A)] exp
2

(- H2)

The arguments in the exponentials can be written in terms of the original
coordinates fl and 6 and in terms of the in-phase components Al and A2.
When this is done and the Fourier transformation (7.85) is carried out, we
obtain for the Wigner function

W(A1i A2) = 2 exp{-2[A1 - Re(a)]2} exp{-2[A2 - Im(a)]2} . (7.92)
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1s

Fig. 7.5. The Wigner function of a coherent state
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This is the Gaussian shown in Fig. 7.5 in the Al-A2 plane. This Gaussian
was illustrated by the shaded circle in Fig. 6.1. The probability distribution
is in perfect correspondence with that of a classical signal amplitude with
additive Gaussian noise.

7.8 The Schrodinger Cat State
and Its Wigner Distribution

In this book we are mainly interested in the quantum noise of electromagnetic
fields at the optical frequencies that are used in optical communications. In
all practical situations, these fields are relatively intense, in that they carry
many photons per mode. The quantum noise of such fields bears a close re-
semblance to classical fields in the presence of additive thermal noise and
thus permits simple interpretations. In this context one does not encounter
the strange behavior exhibited by optical fields with only a few photons.
However, optical fields of higher intensities may also exhibit strange behav-
ior if they are prepared by a nonlinear system sensitive to the presence or
absence of a photon. Quantum states of this kind are called Schrodinger cat
states [70]. The name derives from Schrodinger's thought experiment con-
cerning the prediction of the state of a cat whose life or death is determined
by the outcome of a quantum measurement. How such states can be gener-
ated in principle will be discussed in Chap. 12. The Schrodinger cat thought
experiment itself will be discussed in more detail in Chap. 14, where we shall
attempt to show that the seeming paradoxes associated with this thought
experiment can be removed by a proper definition of the experiment that de-
termines the fate of the cat. At this point we consider Schrodinger cat states
of a photon field in order to show the strangeness of the associated Wigner
function.
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An example of a pure state is a photon state In) or a coherent state a.
An example of an entangled state was considered in the preceding section, of
a photon state passing through a beam splitter. Entangled states need not
involve two observables, such as the photons in each of the ports of the beam
splitter; they can be constructed in the Hilbert space of one observable. Thus,
the state 10) formed from the superposition of two coherent states

I ?P) = N(e-'xl a) + e'xla)) , (7.93)

is an entangled state. Here N is a normalizing factor to ensure a unity magni-
tude of (010). In order to evaluate N we need to know (al,(3). This projection
is found easily using the photon state representation of a coherent state:

*n m
(aI a) =

e-I«I2/2e-I0I2/2
>(nI m)

a

n,m nim!

= e-I«I2/ze-IRi2/z a*non

n!
n

= exp[-(Ia12 + 1,312)/2] exp(a*Q)

In this way one finds for N

zr 11

1

= 2 f1 + cos(2X + ¢) exp (1al
2101)

where 0 =

argL(a*/3).

Let us consider the state (7.93) with

IV)) =
N(e'n14Ia) + e-17r/4I - a) )

(7.94)

(7.95)

(7.96)

and evaluate its Wigner function. We must evaluate projections with the bras
and kets of a and -a. The four expectation values in the kernel of (7.88) are
the following.

Self-term (alla):
z

(al eXp[-rl(At - A*)] exp[rl*(A - A)] exp (- I ZI ) Ia) (7.97a)

eXp[-77(a* -A*)]exp[*(a-A)]exp(- -_)
2

Self-term (-alI - a):
z

(-al exp[-r7(Al - A*)] exp[ll*(A - A)] exp (-
ZI

) I - a) (7.97b)

= exp[r7(a* + A*)] exp[-r7*(a + A)] exp (- 11712 )
2

Cross term (-alla):
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(-a1 exp[_,7(At - A*)] exp[rl*(A - A)] exp (- 1212) Ia) (7.97c)

=eXp[71(a*+A*)]exp[77*(a-A)]exp(- I7I2)exp(-2Ici2).

Cross term (a1I - a):

( I e (A1 - A*)] *(A - A)][-i [-r (- 2 7 97da xp 1 exp 1 exp - a) ( . )

z

= eXp[-77(a* - A*)] exp[-11*(a + A)] exp (- 12I ) exp(-2Ia12) .

With these four terms we construct the kernel in the Fourier transform (7.85)
that leads to the Wigner function. The arguments in the exponentials can
be written in terms of the original coordinates i and 2 and in terms of the
in-phase components Al and A2. We assume for simplicity that a is real.
Then

1 1
W(A1,A2) = INIz

x {exp[-2(Al - a)2] + exp[-2(Al + a)2]

+2 sin(4aA2) exp(-2A2)} .

(7.98)

If the state were an incoherent superposition of the two coherent states
Ice) and I - a), the Wigner function would consist of two Gaussian peaks at
Al = +a, A2 = 0. We shall denote these terms the "self-terms". The quantum
character of the Schrodinger cat state is expressed by the coherence beat at
the origin at Al = 0, A2 = 0, which we shall call the "cross term." The cross
term depends on the phase of the superposition of the states Ia) and I - a).
Had we used the state 10) a Ia) + I - a), the beat term would be a cosine,
rather than a sine. The cross term is not positive definite, indicating that
the Wigner function does not allow an interpretation in terms of a classical
probability distribution. The Wigner function is shown in Fig. 7.6. We also
see that one may not define a probability of the field being either in the state
Ia) or I - a).

The Schrodinger cat state illustrates the peculiar nature of entangled
states. Clearly, the Wigner function of Fig. 7.6 does not permit an interpre-
tation in terms of a signal amplitude with additive noise. This is in spite of
the fact that the parameter a could be large, the photon number of the state
could be large, i.e. the state could have an intensity that is "macroscopic".
Entangled states do not occur in optical communication systems operating
with large photon numbers, since these states are extremely fragile, as we
now proceed to show. The quantum beat, the cross term, is destroyed by
the loss of a very few photons. To see this, let us pass the Schrodinger cat
state through a beam splitter. The state after the beam splitter is easily
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Fig. 7.6. The Wigner function of a Schrodinger cat state: (a) a = 2; (b) a = 4;
(c) W(0, A2); a = 4
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evaluated for each of the two components of the product state entering the
beam splitter, the second port being unexcited. The state is a superposition
of products of coherent states, which remain products of coherent states after
passage through the beam splitter. The output state is

J) = N(e"I4I cos0 a) (9 I - isin4 a) + e-"`'41 cos0 a) (9 Iisin4 a)) ,

(7.99)

where N is a new normalization constant. The Wigner function of the cat
state now involves four new projections with pairwise combinations of the
product states. If the beam splitter lets most of the Schrodinger cat state
through, 0 << 1, the self-terms remain unchanged when cos 0 is replaced by
unity. The cross terms involve the projection

(-i sin 0 ali sin 0 a) : (-ioalioa) = exp(-2I0a12) . (7.100)

The term in the exponent is twice the number of photons siphoned off
by the beam splitter. The cross term is decreased exponentially with the
number of photons lost by the Schrodinger cat state. Once the cross term is
removed, the Schrodinger cat state becomes an incoherent superposition of
two coherent a states, a state with classical probabilistic character.

7.9 Passive and Active Multiports

In the preceding three sections we have studied the probability distributions
of the in-phase and quadrature components of the field of a coherent state,
and the Wigner function of a coherent state. We evaluated the Wigner func-
tion of a Schrodinger cat state in order to show the peculiar behavior of such
special quantum states. However, as mentioned earlier, our main interest is
in the simpler case of linear systems with quantum noise that is additive to
the signal amplitude, in analogy with linear noisy classical networks. Our
objective is to compare the behavior of linear quantum multiports with their
classical counterparts.

The classical description of a passive or active linear multiport is

b=Sa+s, (7.101)

where a is the column matrix containing the signal waves, b is the matrix
containing output waves, and s contains the noise sources. If the multiport
is passive and at thermal equilibrium, the noise sources are evaluated as
shown in Chap. 4. Active multiports contain media that provide gain. The
media are never strictly linear in the sense that excitation at one frequency
produces a response whose amplitude is proportional to the amplitude of the
excitation field and that no mixing of different frequency components occurs.
Since every medium with gain saturates, nonlinear frequency mixing occurs.
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Thus, active systems can be described as linear multiports only after certain
linearizing approximations have been made. Further, active multiports cannot
be at thermal equilibrium, and their noise sources must be determined by the
physics of the gain mechanism.

The quantization of lossless systems has led us to scattering-matrix de-
scriptions of the output in terms of the input. Systems with loss or gain are
physically more sophisticated. We have seen how loss can be treated as cou-
pling to a reservoir of oscillators. Gain can be treated analogously, where the
oscillators must now be able to supply energy to the system. The complexity
of this analysis can be avoided if we adhere to the principle of commutator
conservation and introduce sources that will ensure such conservation. Thus
let us look at a multiport with loss or gain. This multiport is described by
the operator analog of (7.101),

b=set +s. (7.102)

The incoming waves contained in the column matrix a and the outgoing waves
contained in b are waves on open waveguides with commutators that are their
fundamental physical characteristics. In the normalization introduced in Sect.
7.1 (compare (7.5a) and (7.5b) with IAwq -+ Qw),

[6, 6t] = [a, at] =
dw

1 . (7.103)

Using the equation for the multiport (7.102), the implication of (7.103) is
best evaluated using subscript notation:

[bi, bj] = [Sikak + 8i, S;Qae + st] = [Sikak, Sj2ae] + [Si, Sjj

bij

(7.104)

= SiQs; + [si,
"Aw

2-7r

since the mode amplitude operators and noise source operators commute. We
find for the commutators of the noise sources

pi,
dw_ -(6ij - Si2Sje) (7.105)
27r

or, in matrix notation,

s t SSt )105(1 -[ , s ] = ) . a(7.

Let us apply this relation to a section of a lossy waveguide with a power
loss C(< 1) and a scattering matrix relating the input wave to the output
wave

(7.106)
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We find from (7.106)

[§1, §i] = [92, 92] = (1 - G)
w

and [91, §z] = 0 . (7.107)

It is possible to justify physically the use of an operator noise source for
conservation of the commutator. Consider the case of a lossy waveguide. The
output power is less than the input power, because some of the power is lost
on the way. This situation is represented equivalently by a waveguide coupler
as shown in Fig. 7.4, where a1 produces the outputs b3 and b2. If we did not
look at waveguide (3), we would conclude that the waveguide was lossy; part
of the power has been lost. Starting with the equation b2 = S21a1 + S244
suppressing subscripts in the spirit that we are looking only at an incident
wave a and transmitted wave b, we would write b = -,I-L-a + §, with = S21
and s = S24a4. Clearly, a noise source has appeared, which in the present
case of a coupler can be identified with the input to the second guide (4).
If the guide is unexcited, the noise is due to zero-point fluctuations. The
commutator of the noise source is

[S, St] = IS24I2[a4, 6'4] = IS24I2 = 1 - IS21I2 = 1 - G . (7.108)

Thus, we have recovered the commutator of the noise source that accounts
for the conservation of the commutator bracket. The noise comes from the
unexcited port, which is fed only zero-point fluctuations. In this way we have
justified the model of a loss element, starting with a fully reversible system.
The irreversibility is introduced by suppressing the accounting for the outputs
in the other waveguides.

The noise source operators associated with a lossy segment of waveguide
have the usual interpretation of annihilation (§i) and creation (. ) operators,
since G < 1. If the reservoir modes associated with the noise source are in
the ground state, then the expectation value of the operator product §t §j is
zero,

(0l.i Sj I0) = 0 (7.109)

On the other hand, because of the commutation relation (7.107), the expec-
tation value of the operators in reverse order is

(Olsi. I0) = bij (1 - G)
'A

. (7.110)

If the waveguide has power gain G (> 1), we obtain

S=f 1 iv 1
t
J

and
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[91 i §i] = [92, 92] = (1 - G) AW
and [91,9t] 2=0. (7.112)

In the case of a segment of waveguide with gain, the roles of creation
and annihilation operators are reversed, since G > 1. This has profound
consequences, already partially explored in Chap. 6. With the gain reservoir
modes in the ground state, and the operator si interpreted as a creation
operator and §i as an annihilation operator, we have the relations

(0lsi. I0) = 0 and (0I§isjIO) = bi.9(G -
1)'6w

. (7.113)

In Chap. 9 we shall use the commutators to derive the full probability
distribution of the output photons from an amplifier. Here, let us evaluate
the photon number flow and the field fluctuations for a passive structure of
loss L and an active structure of gain G. We assume that the reservoir of
the noise sources is at absolute zero, in the ground state (since at optical
frequencies with 1w >> k9, room temperature can be approximated by zero
temperature for all practical purposes). We assume that the signal is in a
coherent state a. Thus, the input state is the product state Ia)10). We have
for the photon number at the output

(0I(alb2b2la)I0) = (0I(aI[(/ai+si)(v ai+s1)]Ia)I0)

= GIa12L
(7.114)

The output photon flow is the input photon flow reduced by a factor of L.
The mean square fluctuations of the in-phase field component at the input
port (1), indicated by the superscript (1), are:

(IE(1)2I) - (IE(1)1)2 = 11 [(I(ai + ai)2I) - (I(ai + a1))2]

= 4
[(Iai2 + a1 etj + alas + a1 I) - L (a* + a)2]

= 1 vy [a*2 + 2a*a + a2 + 1 - (a* + a)2] =
1 aw

4L 42ir

(7.115)

These are the standard zero-point fluctuations. If we repeat the calculation
(7.114) with the b operators replacing the a operators and use the commu-
tation relations for the noise sources, we find the fluctuations at the output
port (2) to be
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(IE(2'1)2I) - (IE(2'1)I)2 = 4 [(I(b2 + b2)21) - (102' + b2)I)2]

4 [(I[(V C+ Si) + (dal + sl)]ZI)] - 4 L (V La* + V La)2

4 L [L(a*2 + 2a*a + a2) + L + (Islsl + S1S1I) - y La)2]

1L\w
4 27r

(7.116)

The field at the output experiences the same zero-point fluctuations as
the input. The situation is very different for an amplifier. We have for the
expectation value of the output photon number flow

(oI(alb4b2la)Io) = (OI(aj[(Vcal + sl)]Ia)IO)

(7.117)

= LGIaI2+(G-1) .

The output photon number flow is G times the input photon number flow
plus the contribution of amplified spontaneous emission, (G - 1)/(.Aw/27r).
Whereas the input fluctuations are the same as those for the lossy waveguide
under the same input conditions, the output fluctuations of the in-phase field
component are

(F'(1)2) - (E(21))2 = 4 [((b2 +b2 )2) - ((b2 + b2))2]

4
{([(v I_CL1 + 3i) + (v C_al + sl)]2)}

-1 V9(\a*+\Ga)2= 1(2G-1)-w
4 L 4 21r

(7.118)

_ (E12)2) - (Ei2))2

The fluctuations of the quadrature component are found to be equal to those
of the in-phase component, as is easily confirmed by a detailed evaluation.
The gain increases the fluctuations. In the limit of high gain the fluctuations
are twice the value of the amplified zero-point fluctuations at the input.
The fact that the mean square fluctuations of the field have twice the value
of the amplified zero-point fluctuations has a profound significance related
to the quantum theory of simultaneous measurement of two noncommuting
observables. A precise measurement of a quantum observable A implies total
uncertainty in the conjugate observable B, whose operator does not commute
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with A. This statement still allows a less than perfect measurement of the
observable A that will not totally destroy knowledge of the observable B.

The problem of a simultaneous measurement of two observables A and
B with [A, B] 0 has been analyzed in a seminal paper by Arthurs and
Kelly [15]. They coupled the system containing the observables to a measure-
ment apparatus and showed that an optimal measurement arrangement will
arrive at measured values of A and B with an uncertainty twice that imposed
by the uncertainty principle. This is the penalty attached to a "simultane-
ous measurement". Linear amplifiers of large gain provide an output signal
that is classical, one that could be viewed on a scope. The signal can be ob-
served without the disturbance implied by the uncertainty principle. We have
shown that the noise accompanying a signal passing through a linear ampli-
fier of large gain is doubled. In the process of amplification, noise has been
added. However, the amplifier now permits a simultaneous measurement of
the conjugate quadrature component. The fact that the signal-to-noise ratio
has been halved and the noise has been doubled is a manifestation of the
proof presented by Arthurs and Kelly.

7.10 Optimum Noise Measure of a Quantum Network

The characteristic noise matrix defined in the context of classical networks
in Chap. 5 dealt with the available or exchangeable power of a network. The
excess noise figure F -1 of a two-port in the classical domain is the available
or exchangeable noise power within the bandwidth B at the output of the
amplifier divided by the amplifier gain and normalized to kO0B.

Turning to quantized linear multiports, we note that (at least some) of the
internal noise source operators of active networks described by the scattering-
matrix relation (7.102) are creation operators. A consequence of this fact is
that active networks emit photons even if no photons are fed into the input.
The output of the network contains so-called amplified spontaneous emission.
The concept of the power available from a port of a network defined in the
classical regime is easily generalizable to the quantum case since it involves
a thought experiment in which a passive load connected to the port is varied
until the power into the load is maximized. The exchangeable power from a
port with a negative internal resistance involves loading of the port with a
source-free negative resistance. Quantum mechanically, a negative resistance
cannot be source-free; it has to emit its own amplified spontaneous emission.
For this reason we shall limit ourselves in the following discussion to ampli-
fiers with terminal impedances with positive real part. This is not a serious
restriction, since all important cases are of this type, e.g. a fiber laser am-
plifier or a semiconductor laser amplifier. If an amplifier did not meet this
condition, it would be embedded into a circulator to ensure a match at input
and output for stability, thus ensuring terminal impedances with positive real
parts.
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The definition of the noise figure of an optical amplifier is still a contro-
versial issue taken up in Chap. 9. Here we take the point of view, justified in
Chap. 9, that an excess noise figure can be defined for an optical amplifier
as the available power at the amplifier output within the bandwidth B due
to the internal noise sources, divided by the gain and normalized to kO0B.
The normalization itself is not an important issue at this point and will be
reconsidered in Chap. 9. From this definition of excess noise figure a noise
measure can be defined by division by 1 - 1/G. The question then arises as
to the optimum noise measure of a linear quantum amplifier. This question
is answered in this section. Before we do this we introduce the characteris-
tic commutator matrix and determine its connection with the characteristic
noise matrix of Chap. 5.

We have found commutators for the noise source operators were we inter-
pret 9i as either an annihilation operator or a creation operator. The com-
mutators are c numbers. The commutators are, according to (7.105),

[Si,
Q

(8i.j - SipSje) . (7.119)

Equation (7.119) suggests the definition of a characteristic commutator
matrix

C = (SSt - 1)-1 [sst] 1 . (7.120)

This matrix is proportional to the identity matrix. It reminds one of the
characteristic noise matrix defined in Chap. 5, in particular of the charac-
teristic noise matrix applied to a passive network at thermal equilibrium, in
which case the characteristic noise matrix is also proportional to the identity
matrix. In the present case, the characteristic commutator matrix applies to
both passive and active networks. It is easy to see that lossless embeddings
as defined in Chap. 5 leave this matrix invariant. It should be emphasized,
however, that lossless embeddings imply subtle source transformations that
deserve further scrutiny.

First of all, let us suppose that the network is a passive one. Then the
matrix (1 - SSt) is positive definite. All eigenvalues of the characteristic
commutator matrix are negative and of equal magnitude. Since the com-
mutator determines the mean square fluctuations, with the noise sources in
their ground states, we see immediately that the network emits zero-point
fluctuations from every one of its ports. Lossless embeddings transform both
(SSt - 1)-1 and the noise sources si. The transformations result in linear
combinations of the si. Thus, the new sources are still formed from annihila-
tion operators.

We may construct a characteristic noise matrix analogous to (5.65) of
Chap. 5. The mean square field fluctuations are equal to (1/4)(.i. ) for each
of the two (in-phase and quadrature) field components and thus the proper
definition of the characteristic noise matrix as a predictor of the expectation
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value of the sum of the field amplitudes squared indicated by the subscript
"fas" is

Ns,fas = 2 (SSt - 1)-1(sst)

and, according to (7.120), this can be evaluated as

(7.121)

(7.122)

This is negative definite and proportional to the identity matrix. Its eigen-
values are all the same. In the classical interpretation of the characteristic
noise matrix, its eigenvalues yield the extrema of the noise power emitted
into loads under arbitrary variation of the loads. The loads are all passive. In
the quantum interpretation, the eigenvalues give the the mean square field
fluctuations under arbitrary variation of the passive loads. The mean square
field fluctuations of the outgoing waves are all the same and equal to aw/47r.
Hence this finding simply confirms that all outgoing waves of a passive net-
work experience standard zero-point fluctuations.

Next, consider a network with a negative definite matrix (1 - SSt). This
is a fully active network. In the ideal case of a perfectly inverted gain medium,
all noise sources are creation operators. The ideal minimum available photon
flux (the available power divided by hw) of the network is the same at all
ports and equal to dw/27r. A lossless embedding again results in new sources
that are linear combinations of the si, which are now creation operators. The
minimum available photon flux remains unchanged. Of course, a superposi-
tion of a creation operator and an annihilation operator could be responsible
for a net commutator bracket, as we have seen in the case of an incompletely
inverted gain medium. In this case the available photon flux is larger than
in the case when all operators sj are pure creation operators. In order to
predict the available photon flux, the composition of the operators §j must
be known. One may take as a simple example a two-port fiber amplifier. Its
scattering matrix is

S 0 (7.123)
= [ 0 v'G- I

.

Its commutator matrix is, according to (7.119),

LXwIG-1 0 1Olst)_ -L
21r 0 G-1 (7.124)

If the gain medium is perfectly inverted, both noise operators are creation
operators and the available photon flux from either of the two ports is

available photon flux = (G - 1) (7.125)
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One may again construct a characteristic noise matrix. Now, however, we can-
not appeal to the classical interpretation in terms of a thought experiment in
which the loads are varied arbitrarily, and the eigenvalues of the characteris-
tic noise matrix give the extrema of the exchangeable power. These extrema
require loading with active terminations, which cannot be noise-free in the
quantum limit. We must interpret the eigenvalues in terms of the stationary
values of the noise measure. These stationary values may be reached with
passive loading if the amplifier is constructed so that the input impedances
are all passive (achieved, if necessary, with embeddings using a circulator).
In the classical interpretation, the noise measure involves the excess noise
figure, which in turn is determined by the noise output power referred to
the input by division by the gain. Hence, in the case of an active network
with a negative definite matrix (1 - SSt), the quantum interpretation of the
characteristic noise matrix can be in terms of the power (or photon flux),
which involves (si§i). The characteristic noise matrix, as a predictor of the
amplified spontaneous emission (ASE) noise, is

NS,ASE = (SSt - 1)`1(sf ) _ 1 . (7.126)

The extrema of the noise measure are given by the eigenvalues of this matrix,
which are all identical.

The situation of an indefinite network is more complicated. According to
(7.119), the commutators of the noise sources are both positive and negative,
i.e. the column matrix consisting of the operators sj contains both creation
operators and annihilation operators. This information can be used to evalu-
ate either the zero-point fluctuations of the field or the photon flow from the
network. To use it one needs to be specific as to whether one is looking for
mean square fluctuations or photon flow. An example may be helpful. Con-
sider the equivalent circuit of an FET in the scattering-matrix formulation.
This could also be the equivalent circuit of an optical amplifier (as described
by (7.123) and (7.124)), followed by a circulator with a matched termination,
as in Fig. 5.8. The scattering matrix is

S - [S21 01 _ Lv 01
(7.127)

We find, from the commutator matrix (7.120),

'AW

.
(7.128)[s, st] [1 1

0 G-
For G > 1, there is one negative and one positive commutator. Hence the
two noise sources are represented by a creation operator and an annihilation
operator, respectively. From the positive commutator one may evaluate the
zero-point fluctuations at the input. From the negative commutator one may
obtain the optimum noise measure under conditions of complete inversion,
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oruv
MoPt =

k9a
(7.129)

giving a number of the order of 40 for visible or near-infrared light. A mi-
crowave traveling-wave tube operating at 10 GHz can have an excess noise
figure as low as 1 dB. Thus, optical amplifiers, even under the most ideal
conditions, are terribly noisy in comparison with microwave amplifiers. Fur-
ther, their noise performance is determined by fundamental physical laws.
(The quantum limit for traveling-wave tubes is negligible owing to the low
energy of a microwave photon.) Yet, long-distance fiber communication is
now the major technology for long-distance communications. Why did this
happen, when microwave amplifiers have so much better noise performance?
The answer lies in the exceedingly low loss and excellent broadband propa-
gation properties of optical fibers. Optical-fiber communication has won out
because of the exceptional properties of optical fibers and because it is relax
tively easy to generate optical signals of sufficiently high power level that a
large signal-to-noise ratio can be maintained.

It should be mentioned that it is customary to define noise figures for
optical amplifiers normalized to hwo, and not to kGo. Then, of course, their
excess noise figure does not seem so high. Ideal amplification with high gain
leads to an excess noise figure of unity, or a noise figure of 2 (3 dB).

7.11 Summary

In this chapter we introduced one of several renormalizations of the creation
and annihilation operators. This renormalization was designed to emphasize
the correspondence between classical and quantum mechanical linear, noisy
networks. The noise, expressed classically as the power in the bandwidth
Aw/2.7r = B, was expressed as the photon flux in the same bandwidth.

A linear, lossless, phase-insensitive network has a Hamiltonian that con-
tains sums of the photon number operators, i.e. products of creation and
annihilation operators. This Hamiltonian leads to linear equations of mo-
tion for the annihilation operators. Integration of Heisenberg's equation of
motion yields a unitary scattering matrix that is in one-to-one correspon-
dence with its classical counterpart. Since operators evolve via pre- and post-
multiplication by unitary matrices it was of interest to explore how this evo-
lution corresponded to the evolution described by a scattering matrix. We
showed this to be the case using some simple functional relations among
operator expressions.

While we prefer the Heisenberg formalism to that of Schrodinger, we
looked briefly at so-called entangled states, which emerge explicitly only in
the Schrodinger formalism. These are nonclassical states that will find ap-
plication in the analysis of Chap. 14. We studied the characteristic function
of a quantum observable which contains the information on the moments of
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the observable. In the classical regime, the Fourier transform of the charac-
teristic function of two random variables is the joint probability function. In
the quantum regime, the Fourier transform may not be positive definite, and
thus cannot be interpreted as a probability. We showed with an interferome-
ter example that the interpretation of the Fourier transform as a probability,
even when positive definite, can lead to erroneous conclusions. In the case
when the two noncommuting observables are position and momentum, the
Fourier transform of the characteristic function is the so-called Wigner func-
tion. The in-phase and quadrature components of a quantized electric field
are equivalent stand-ins for position and momentum.

Coherent states are "classical" states in that they do not exhibit peculiar
quantum behavior. Hence, it was of interest to determine how a linear, lossless
network transforms an input consisting of coherent states. We found the
expected: coherent states remain coherent as they are transformed by a linear,
lossless network.

A linear network with loss or gain is not describable by a Hamiltonian. The
equations of motion of the annihilation operator are still linear, but photons
are not conserved. Conservation of the commutator brackets is provided by
operator noise sources. From the commutator relations of the noise sources it
was possible to construct a characteristic noise matrix for the network that
sets a lower limit on the optimum noise measure achievable with a multiport.

Linear phase-insensitive amplification to a classical level permits the de-
termination of both the in-phase and the quadrature components of the elec-
tric field. The operators representing these fields do not commute and thus
"are not measurable simultaneously". However, as originally pointed out by
Arthurs and Kelly, the measurement is possible at the expense of an un-
certainty twice that set by the Heisenberg uncertainty principle. An ideal
amplifier permits such a measurement and so does a heterodyne receiver, as
shown in the next chapter. It is thus no coincidence that the signal-to-noise
ratios of an ideal amplifier of large gain and of a heterodyne detector are the
same.

Problems

7.1* Show that the state (1/v'-2)(12) 10) - 10)12)) passes through a beam split-
ter unchanged.

7.2* The photon state 12)10) enters the input ports of a beam splitter with
IMIT = 0. What is the state at the output?

7.3 The coherent-state wave function 1a) 1,3) enters the input ports of a 50/50
beam splitter. What is the output wave function?
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7.4* Consider the scattering-matrix equivalent circuit of the FET, Fig. 5.13,
and use it as a model for a nonreciprocal optical amplifier. Find the commuta-
tors of the noise wave generators so that they conserve commutator brackets.
What is the optimum noise performance?

It may be worth pointing out that this equivalent circuit applies to a fiber
amplifier with a Faraday circulator.

7.5 Evaluate the expectation value of the cosine operator C for a coherent

state Ia). Evaluate the projection (i3ICIa). See Appendix A.7.

7.6 Evaluate the probability distribution of the in-phase and quadrature
components of the field, B(1) and B(2), at the output of the amplifier de-
scribed in Sect. 7.10 for a coherent input state Ia).

7.7 Evaluate the characteristic function for the in-phase and quadrature
components of the output field of an attenuator of loss G with a single-
photon input. Note: you can use the Baker-Hausdorff theorem on the output
field since commutators are preserved. Plot the characteristic function as a
function of and G. Plot the probability distributions as functions of B(i)
and L, i=1,2.
7.8 Determine the Wigner function of the in-phase and quadrature compo-
nents of the number state 11) and plot it.

7.9 Find the characteristic function for the number state 12) and plot it.

Solutions

7.1 From (7.49) we find

c'OI SG(T)) = E (n )n (AtE + BtA)n 1 (12)10) -10)12))
n=0

The operator A operates on the first wave function in the product, the oper-
ator B on the second.

(AtE + BtA) (12)10) - 10)12)) = (11)11) - 11)11)) = 0.

Thus the series stops at the first term and the state is indeed unchanged.

7.2 The input state can be expressed as the sum of a symmetric and an
antisymmetric state

12)10) = 2 (12)10) + 10)12)) + 2 (12)10) - 10)12))

From (7.49) we find
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I(T))
Oc' n

[12)0)
1_ (- ) (A +BtA)+10)12))+(12)10)-10)12))]

n=0

We follow the evolutions of the symmetric state and the antisymmetric state
through the system separately. From Prob. 7.1 we know that the antisym-
metric state remains unchanged. The operator A operates on the first wave
function in the product, the operator B on the second:

(AtE + BtA) I (12)10) + 10)12)) = vI1)I1) .

Operation with the second power gives

(AtE + BtA)22(12)10) + 10)12))

= (AtE + BtA)/2-I1)11)

= 2(12)10) + 10)12))

Operation with the third power gives

(AtB + BtA)32(I2)I0) + 10)12))

= (AtE + BtA)2(12)10) + 10)12))

= 4vI1)I1) .

Operation with the fourth power gives

(AtB + BtA141(12)10) + 10)12))

= (AtE + BtA)4\11)11)

= 162(12)10) + 10)12))

We can now discern the structure of the wave function. The nth odd power
gives 2n(1/\)11)11). The nth even power gives 2n(1/2)(I2)I0) + 10)12)). The
antisymmetric wave function remains unchanged. We find for the entire series

I'(T))

= 2(12)10) + 10)12)) cos20 - I1)I1) sin 20+ 2(12)10) - 10)12))

It is easily checked that (0(T)1V(T)) = 1.



280 7. Phase-Insensitive Systems

7.4 We use the wave formalism in the transfer matrix formulation, (5.129).
We have

T =
[_2/o10, PT = [1 01] .

The noise source commutator matrix is

L L ryb ] ' [rya ryb J ] _
[%, 7aI [rya, ryb]

['Yb, rya} [b]

The characteristic commutator matrix is

[rya, %t [rya, rybt

CT = (PT1 -TPT1Tt)-1['f,'ytl = 1 - 4/Iµ12 1 - 4/1µI2

- [S, %t I - [5'b, ryb }

This commutator matrix must be equal to -zlw/27r times the identity matrix.
From this requirement we find

[7a, yal = - (FU1- l2) aw/27r , [ya, ryb) 'rat = 0 ,

[Yb, rybj = Qw/21r .

The operator ' a is a creation operator when 1µI2/4 > 1, when there is gain.
The characteristic noise matrix is

1('farya) (1' 'Yb)
NT = (PT1 -TPT1Tt)-1

(ry6rya) ryb 5'b)

=

/w r1 0]
27r 0 0

The zero eigenvalue is associated with loss. The eigenvalue associated with
gain is the standard eigenvalue of an ideal optical amplifier.
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In Chap. 6, we studied a measurement of the spontaneous emission of an
amplifier. A bolometer detects power directly by measuring the amount of
heat generated by the power absorbed. Microwave radiation impinging upon a
diode terminating a waveguide induces curents in the diode. The nonlinearity
of the diode leads to current or voltage rectification and the d.c. voltage across
the diode is a measure of the electric field across the diode. From the electric
field, the incident power can be inferred, if there is no reflection or if proper
account is taken of the reflection. The power can be calibrated versus the d.c.
voltage.

The photons of optical waves impinging upon a photocathode can propel
electrons across the potential barrier between the cathode material and the
vacuum. The emitted electrons are collected on the anode and their flow is a
measure of the incident flow of photons. A p-n junction can act like a vacuum
diode. If the photons are absorbed in the depletion region of a p-n junction
generating electron-hole pairs, the holes travel to the n side and the electrons
to the p side, constituting a photocurrent that is a measure of the absorbed
photon flow. The ratio of the number of carriers collected to the number of
photons impinging on the photodetector is the so-called quantum efficiency.
The quantum efficiency of photodetectors of near-infrared light can approach
unity.

In this chapter, we study the noise in detectors in general and photo-
detectors in particular. We start with the classical analysis of a square-law
detector. Then we look at a photodetector whose current is a measure of the
incident photon flux. We determine the signal-to-noise ratio of photodetec-
tion. Direct photodetection loses the phase information about the incident
optical wave. The phase can be detected by heterodyne detection, which is
equivalent to amplification and detection of an incident optical wave. We
determine the signal-to-noise ratio of balanced heterodyne detection both
classically and quantum mechanically. We also look at homodyne detection,
in which the local-oscillator frequency coincides with the signal frequency
and in which only one of the two components of the field is detected. The
signal-to-noise ratio turns out to be double that of heterodyne detection for
reasons that can be traced to the theory of a simultaneous measurement of
two noncommuting quantum observables.
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8.1 Classical Description of Shot Noise
and Heterodyne Detection

Microwave p-n junctions can be used as square-law detectors. The current
through the detector is proportional to the square of the electric field. If the
detector is not fast enough to follow a microwave cycle, the current can be
written

i8(t) = g7IEs(t)I2 , (8.1)

where E8(t) is the complex electric-field amplitude of the signal, q is the
electron charge, and -y is a proportionality constant. The d.c. current is given
by the time average. All detectors that produce a time-averaged current flow
exhibit shot noise (or higher levels of noise if there is avalanche multiplication)
corresponding to the average current in the detector. The mean square current
fluctuations of a d.c. current I. in a bandwidth B are those of shot noise
(compare (4.15)):

(in) = 2gI0B . (8.2)

If the detector has a resistance R, there may be thermal noise associated with
the resistance according to the Nyquist formula (4.76). The signal-to-noise
ratio is computed from the ratio of the mean square signal current to the
mean square noise current. Suppose that the signal is a steady-state sinusoid
E8(t) = AS exp(-iwt). The d.c. current is then Io = gryIEsI2 = q-IA3I2, and
the signal-to-noise ratio is

N (i2) 2B

if thermal noise can be neglected.
An optical detector of unity quantum efficiency can detect, in principle,

single photons. The photon flow rate must be low enough that the detector
can resolve the incident photons and the thermal noise must be negligible.
Such an ideal detector may be considered to be noise-free; it reproduces
faithfully the photonic signal. Noise-free detection is consistent with quantum
mechanics, since there is no fundamental limit imposed on the accuracy of
measurement of an observable. As we have seen earlier, in the example of
an optical amplifier, only a simultaneous measurement of two noncommuting
observables is accompanied by unavoidable noise.

When a signal is passed through a narrow-band optical preamplifier, as
studied in detail in Chap. 9, the ASE photon flow imposes a background
noise that is not Poissonian but, rather, has Bose-Einstein statistics; it is
not simple shot noise. On the other hand, if the detector is illuminated by
attenuated laser light, with photons that are Poisson-distributed, as will be
shown in Chap. 9, then the charge current is also Poisson-distributed with a
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shot noise spectrum. The discussion in this chapter will be limited to laser
light with photons and charge carriers that have a Poisson distribution.

An optical power P at an optical frequency wo incident upon a pho-
todetector of quantum efficiency q produces a current i(t) according to the
formula

i(t) = rlq p(t) , (8.4)

where P(t)/tiwo represents the instantaneous photon flow, an identification
possible when the optical radiation is sufficiently narrow-band that the as-
signment of the fixed energy 11w0 to all photons is legitimate. The physical
picture associated with (8.4) is carrier generation in one-to-one correspon-
dence with the incident photon flux. Just how this photon flow is to be
defined will be the topic of this chapter. As a simple semiclassical expedient
one may write the power in terms of the complex field amplitude E(t), with
E(t) so normalized that

E*(t)E(t) = P(t) . (8.5)

Note that in (8.4) the absolute magnitude of the complex field amplitude
squared is used, not the instantaneous E field squared. This is not an ap-
proximation, as it was in the case of a microwave square-law detector, but a
consequence of the fact that the process of photodetection responds to the
incident photon flux. The photocurrent is thus

E*(t)E(t)
i(t) = rlq (8.6)

hwo

The current fluctuations are those of shot noise accompanying the d.c. current
r7gP(t)/1iwo. The spectrum of shot noise is white. If the optical power varies
with time, the spectrum of the current is composed of a white shot noise
background and the spectrum of P(t), as shown in Chap. 4.

All phase information of an optical signal is lost in direct detection. Phase
information can be recovered in heterodyne detection. An experimental ar-
rangement for microwave heterodyne detection is shown in Fig. 8.1. The mode
incident upon the detector is made up of a local-oscillator mode amplitude
E0(t) and a signal mode amplitude E,(t), superimposed via a waveguide
junction as shown. If the junction is highly transmissive for the signal, no ap-
preciable sacrifice in signal power incident upon the detector need be made.
There is, of course, a sacrifice of local-oscillator power, which can be avoided
in a balanced detector arrangement as shown later on. The current in the
photodetector to first order in the signal field is

i(t) - 4'y[Eo(t)Eo(t) + Eo(t)E8(t) + E, (t)E0(t)] = io + i3(t) , (8.7)

where we neglect the square of the signal field as very much smaller than the
local-oscillator power. The detector current is made up of two parts: a d.c.
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Detector

Signal >

Fig. 8.1. Experimental arrangement for microwave heterodyne detection

current i,, due to the local oscillator and a part due to the beat between the
local oscillator and the signal, is(t). If the local oscillator produces a simple
sinusoid at frequency wo and the signal has frequency w5, then the fields can
be written

E0 (t) = A. exp(-iwot) and ES (t) = A3 exp(-iwst) . (8.8)

The signal current is

i3(t) = qy{A*A5 exp[i(wo - ws)t] + AOA* exp[-i(wo - wst]}
(8.9)

= 2gyl AoA5I cos[(wo - ws)t + 0] ,

where = arg(A*A5). The detector current carries both phase and amplitude
information. The noise in the detector is the shot noise due to the local-
oscillator bias current, which is time-independent, since the small amplitude
of the beat term can be ignored (signal-dependent noise is ignored):

(2n) = 2q'YI Aol2B. (8.10)

The signal-to-noise ratio of heterodyne detection is thus

S (is(t)) 2 IASI2= = 1 B (8.11)(i2 )N
n

The time average of the square of the photodetector current introduces a
factor of 1/2, the average of a cosine-squared function. Note that yjAs12 is
the number of carriers produced by the signal impinging upon the detector
per unit time. The signal-to-noise ratio is equal to the number of carriers
produced by the signal in the time interval 1/B.

The same analysis can be repeated for a photodetector, as shown in Fig.
8.2. Instead of the waveguide junction, a beam splitter is used. The splitting
ratio is such that most of the signal is transmitted, but local-oscillator power
is sacrificed. We assume that the signal wave and the local-oscillator wave
have the same polarization and are phase-coherent across the detector surface.
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Local oscillator

Signal Detector
0

Reflectivity r2 = R << 1

Fig. 8.2. Experimental arrangement for optical heterodyne detector

If not, a mode decomposition is required, and only pairs of modes of the
same order and same polarization give a current response. We shall not be
concerned with this more complicated situation, since it must be avoided in
practice. The analysis is carried through completely analogously. Instead of
the coefficient ry, the coefficient q/hw,, is used, and the signal-to-noise ratio
is

S _ (j '(t))2 _ IASI2

N (an) - (8.12)

Just as in the microwave case, the signal to noise ratio is the the number of
charge carriers produced by the signal in the time interval 1/B.

8.2 Balanced Detection

Heterodyne detection by a local oscillator, coherent with the signal, is a very
important processing method for a returning radar signal. However, the de-
tection of a radar signal encounters a serious problem. The signal is the return
echo from a powerful pulse, but attenuated by 60 dB or more. In the analysis
of detection we have assumed that the noise accompanying the bias current
produced by the local oscillator is shot noise. This may not be true, since
the local oscillator undergoes disturbances that cause fluctuations of the lo-
cal oscillator power. Even if they are 60 dB below the local oscillator power
level, they become comparable to the level of the returning signal. Balanced
heterodyne detection, invented in radar technology, overcomes the problem
of oscillator noise. Figure 8.3 shows both the radar implementation and the
optical implementation of balanced heterodyne detection. The local oscillator
is fed through one waveguide port of a magic T, the signal through the other
port. The fields in the outgoing waves in the two waveguides are superposi-
tions of the incident fields, but with sign changes due to the symmetry of the
magic T. The local oscillator excites outgoing waves with symmetric electric
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Local oscillator

(b)

Fig. 8.3. (a) Microwave and (b) optical implementations of balanced heterodyne
detection. The magic T is a four-port matched at all ports

fields, the signal excites them antisymmetrically, as can be seen easily by
just sketching the field distribution within the magic T. Thus the complex
amplitudes of the electric fields impinging upon the detectors are

El = =(E0 - E3) and E2 = =(E. + Es) . (8.13)

The currents of the two detectors are subtracted. If the square of the signal
is neglected the net output current is

i(t) = g7(IE2I2 - IE1I2) = 4'y(E0Es + EOES) . (8.14)

The rectified local-oscillator current cancels. If this current fluctuates, the
fluctuations do not appear in the current output. With Eo = Ao exp(-iwot)
and Es = As exp(-iw,t), the square of the signal current averaged over time
is
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(is(t)) = g2y2(IA0As +AOAsl2)

= g2y24IAo12IAs12(cos2[(wo - ws)t + }) (8.15)

= g2y221Ao121As12 ,

where 0 = arg(EoE8). The noise is due to the shot noise current in each
of the detectors, with a current 2 qyl Eo 12 each, adding to the net shot noise
value

(Zn) = 2g27I Ao12B B. (8.16)

Thus, the signal-to-noise ratio is

S (is)2 yIAs12 (8.17)
N (2n) B

In the numerator is the rate at which charge carriers would be produced by
the signal alone impinging upon the detector. Division by B gives the number
of carriers that would be produced by the signal alone in a time interval equal
to the inverse bandwidth. The signal-to-noise ratio is the same as (8.12) for
heterodyne detection with a single detector. The arrangement of the balanced
detector has the advantage that it cancels fluctuations of the local-oscillator
power to first order and that it uses the total local-oscillator power.

The optical version of the balanced detector, Fig. 8.3b, is entirely anal-
ogous. Instead of the magic T, a 50/50 beam splitter is used. The balanced
detector utilizes the full local-oscillator power incident upon the 50/50 beam
splitter. The factor -y in (8.17) is replaced by rl/hwo. Note that the photon-
energy-normalizing factor hwo has not been changed, since detectors can re-
spond only to low beat frequencies. Thus, the energies of the signal photons
and local-oscillator photons differ by a negligible amount.

The semiclassical analysis of balanced optical detection is simple. The
photons passing through the beam splitter are randomly sent to either one
detector or the other. Each of the two detectors experiences the full shot noise
associated with the current through it. Fluctuations of the local-oscillator
power are coherent at the two detectors and cancel in the subtraction circuit.
The shot noise in the two detectors is uncorrelated and the fluctuations add
in the subtraction circuit. Hence the difference current has shot noise fluctu-
ations of magnitude equal to the sum of the fluctuations in each detector. In
the linearized theory, in which only the local-oscillator current is responsible
for the noise, the signal-to-noise ratio of the balanced detector is the same as
of the simple heterodyne detector of Fig. 8.2 for equal local-oscillator power as
given in (8.12). Thus the balanced optical heterodyne detector gives the same
signal-to-noise ratio as a single heterodyne detector, but with fluctuations of
local-oscillator power suppressed.

Homodyne detection is the degenerate heterodyne detection that occurs
when the local-oscillator and signal frequencies are equal. Then, the current
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is a measure of the electric field that is in phase with the local oscillator. Not
all of the shot noise is detected. Shot noise consists of randomly excited am-
plitudes of cosine and sine waves referred to the phase of the local oscillator.
Of these, only the cosine waves are detected. The noise is halved. This fact
was pointed out by B. Oliver in 1962 [71]. In a follow-up note by C. H. Townes
and the author it was pointed out that the increase in signal-to-noise ratio is
accompanied by a loss of information contained in the detected signal [72].
It took some years before the full implication of the difference was grasped
in the context of detection of squeezed light, as discussed in Chap. 11.

8.3 Quantum Description of Direct Detection

In the quantum analysis of photocurrent generation, the incident photon flux
is responsible for the current, photons are annihilated and carriers are gener-
ated. In the quantum analysis of modes, the modes were set up as functions of
the propagation constant We shall now derive the quantum description
of the photon current for radiation that consists of a succession of coherent
states. The photon number in a quantization interval of length L is Att A,,,,.
A photodetection measurement that converts photons into photoelectrons is,
essentially, a measurement describable by the operator A,t,LA,. In its defini-
tion, the quantization interval L plays an essential role. Its choice fixes the
increment a0 of the Fourier decomposition of the modes. This increment also
fixes the frequency increment Aw = (dw/d)3)A,8. Changes in the choice of the
interval change the interpretation of the "photons" contained in the optical
field. This appears surprising, at first. However, we shall emphasize later on,
and in detail in Chap. 14, that the interpretation of the "physical meaning" of
a quantum concept requires the specification of the measurement apparatus.
The measurement is performed with an apparatus of a certain bandwidth
(temporal resolution). It is the bandwidth of the apparatus that dictates the
choice of L.

The charge registered by the detector over the time interval L/v9 is

gAmAm, (8.18)

a Hermitian operator. For a coherent state, the expectation value of the
charge is

(&VQI a) = q(c ALAI a) = gkad2 = q(n) , (8.19)

where (n) is the expectation value of the photon number. We shall omit
the subscript m henceforth, since we are dealing with one mode only. Let
us now determine the fluctuation properties of the charge. We have, from
the defining equation and the commutation relations of the creation and
annihilation operators of the electromagnetic field,
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(aIQ2la) = g2(aI AtAAtAla) = g2(alAtAtAA + AtAla)
(8.20)

= g2lal4 + g2laI2 = g2(n)2 + q2(n).

Here, we have put the operators into normal order: creation operators pre-
cede annihilation operators. In the process, the commutation relation is used,
which accounts for the added term in the last expression. The terms in normal
order are easily evaluated for a coherent state, since the annihilation oper-
ators operating on a ket on the right produce an a, and creation operators
operating on a bra on the left produce an a*.

The mean square fluctuations of the charge are

(alV2la) - (al QIa)2 = q2(n) . (8.21)

These are the fluctuations of a Poisson process, consistent with the derivation
in Chap. 4 for a completely random flow of charge. One may model the
generation of a photocurrent by an optical field as a random generation of
photocarriers with the rate of generation determined by the power level of
the incident light. Conversely, according to the analysis of Chap. 6, one may
view the process as the generation of carriers in one-to-one correspondence
with an incident photon flux with a Poisson distribution of photons. Both
interpretations are possible at this level of the analysis.

Equation (8.21) shows that the mean square fluctuations of the charge
carriers are equal to the photon number. The photon number is evaluated
for a length interval L. Photons assigned to a length interval L enter the
photon detector within a time interval T = L/v9. Hence the choice of the
length interval fixes the time interval of the observation. This time interval,
in turn, is related to the time resolution of the detector, the measurement
instrument. If the electronic bandwidth of the detector is B, then the detector
can resolve changes of the photon flow within a time T = 1/B. This implies
that the quantization of the incoming photons must choose a length L such
that L = v9T = v9/B. How this assignment is to be interpreted when the
optical spectrum has a bandwidth much larger than zAw = 27rB will be
discussed in greater detail further on.

It is worth pointing out that the fluctuations have arisen from the commu-
tator of the field operators. Since the commutator is responsible for the zero-
point fluctuations, one is justified in interpreting the shot noise as originating
from carrier emission fluctuations induced by the zero-point fluctuations of
the field. This interpretation is analogous to, yet different from, the interpre-
tation of spontaneous emission in an amplifier as being the emission induced
by the zero-point fluctuations of the field. In the amplifier, the zero-point
fluctuations induce emission of photons. In the photodetector case, they only
contribute to the fluctuations. Zero-point fluctuations by themselves produce
no photocurrent.
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8.4 Quantum Theory of Balanced Heterodyne Detection

We have presented a classical analysis of heterodyne detection and shown that
it detects both the phase and the amplitude of the signal. Now we look at the
quantum analysis of heterodyne detection. Consider Fig. 8.3b. The output of
the local oscillator impinges upon one port of a beam splitter, the signal on
the other port. The beam splitter was analyzed in Sect. 7.2. If only one pair
of incident waves is involved, one need not use the full four-by-four scattering
matrix; one may use the reduced two-by-two portion of the scattering matrix
that is analogous to that of a mirror, (7.10). The waves Bl and B2 incident
upon the two photodetectors are

Bl = (AL - iAs)

B2 = (-iAL + A,,).

The difference between the charges collected by the two detectors is

(8.22)

q(BiBI-BiB2)

= 2 [(AL + iAs)(AL - iAs) - (iAL + AS)(-iAL + As)] (8.23)

= -iq(ALA, - AtAL) .

In the Heisenberg representation, the operators AL and As are time-dependent,
with the time dependences exp(-iwLt) and exp(-iwst), respectively. The ex-
pectation value obtained by projection via the coherent states, product states
of the local oscillator and signal states, gives

(Q) _-iq(a8I(aLI(ALA,-AsAL)IaL)Ias)
(8.24)

= 2ql aLas l sin[(WL - Ws)t + ql] ,

where q = arg(asaL). The mean square fluctuations of the charge are

(Q2) - (Q)2 = (asI (OIL Ig2(ALAs - AsAL)(At A.,

-ASAL)IaL)Ias) (8.25a)

+q2 (as I (OIL I q2 (AL As - AsAL) 101L) la,, )2

This expression is evaluated by casting the operators into normal order:
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(Q2) - (Q)2 = -(asI (aLIg2(A'L A'L AsA.,

-At ALA3A3 - A'A,ALAL

+AtAsALAL)IaL)Ic )

(8.25b)

+g2(a5I (aLI g2(AtA3 + ALAL)I aL)I as)

+g2(a,I (aLI (AL' A,g - AtAL)IaL)I as)2

= g2(IaLI2 + Ia8I2) = q2((nL) + (ns))

The first of the above expressions contains the expectation value of the
normally ordered operator Q2 and that of the "remainder operator" of the
normal-ordering process, minus the expectation value squared of the opera-
tor Q. The expectation value of the normally ordered operator Q2 cancels
the expectation value squared of the operator Q. The fluctuations are due
entirely to the expectation value of the "remainder operator". The fluctua-
tions are proportional to the sum of the signal and local-oscillator photon
numbers. They originate from the commutators. In the classical discussion of
heterodyne detection in Sect. 8.2 we attributed all the noise to the local os-
cillator and ignored the signal-induced noise, which is legitimate if the signal
power is much smaller than the local-oscillator power. In the present, more
accurate, analysis of the heterodyne detector we find that the fluctuations
g2IaLI2 = g2(nL) arise from the commutator of the signal field. One may
interpret this term as fluctuations induced by the signal zero-point fluctua-
tions in the charge generated by the local-oscillator photons, and the term
q2 (n,) as the fluctuations produced by the zero-point fluctuations of the local
oscillator field in the charge generated by the signal photons.

It should be pointed out that the analysis which led to (8.25) is not
complete. We assumed that the input to the beam splitter consisted solely of
the local-oscillator output and the signal. A detector tuned to the difference
frequency (1 = I ws - wL I will pick up "signals" at both frequencies WL ± Q,
i.e. the signal and its "image". Thus, we should have used for the "signal"
operator AS in (8.22) the sum of the signal operator AS at frequency W., and
the image operator Ai at frequency wi = I2wL - W,1- If the image band is
unexcited, then (AiAi) = 0. Yet the presence of Ai in (8.22) contributes
to the fluctuations. Without writing down explicitly the extended equations
(8.23)-(8.25), it is easy to see that the commutator [Ai, At] = 1 doubles the
contribution to the fluctuations of the local oscillator:

(Q2) - (Q)2 = g2(2IaLI2 + IasI2) . (8.26)
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8.5 Linearized Analysis of Heterodyne Detection

In the linearized approximation, the local oscillator operator in (8.22) is writ-
ten as a c number,

AL -4 aL exp(-iwLt) . (8.27)

When the replacement (8.27) is entered into (8.23), and we take note that
the image band must also be included in the analysis, we find

-iq[aL exp(iwLt)(A,8 + Ai) - aL exp(-iwLt)(As + Ai )] . (8.28)

The mean square fluctuations of charge can be obtained in the usual way by
putting the creation and annihilation operators in the expression for Q2 into
normal order and noting that the expectation value of the normally ordered
expression cancels against (Q) 2

(QZ) - (Q)2 = -g2(a,I (ail

{aL (As As + At At + 2AsAZ )

+ai (As As + Ai,Ai + 2A3Ai)

-HaLI2[2(As +Ai)(AS +Ai) +2]}lai)lan)

+g2(asI(aiI[a* (As + Ai) - aL(As + A?)]Ias)jai)2

= 2g21 aL I2 = 2g2 (nL)
(8.29)

We have found a result like (8.26), except for the fact that the contribution to
the fluctuations of the signal is missing. If the signal photon number is much
smaller than that of the local oscillator, the approximation is legitimate.

In the classical analysis we evaluated the mean square fluctuations of the
detector current, rather than the charge. We may convert (8.28) into a current
operator by noting that the waves propagate at the group velocity vg, that
the wave packets occupy a length L, and thus that the charge per unit time,
namely the current, is vg/L times the operator (8.28):

I = 4 L -iq LEg- [aL(As + Ai) - aL(As +A!)] )] .
(8.30)

A coherent state has the time dependence exp(-iwt) = exp(-i,3vgx). The
expectation value of the current is thus

(1Z 1) = 2Lg {JaLasI sin[(WL - ws)t + ]} , (8.31)
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where = arg(asaL). A display of the current on an oscilloscope would show
a sinusoidal function of time, lasting a time L/v9. Since the current operator
differs from the charge operator only by a c number factor, the mean square
fluctuations of the current may be evaluated in the same way as those of the
charge. Accordingly,

(22) - (Z)2 - q2 \ L /
2

((Q2) - (Q)2) =
2q2

\ L /
2

(nL) (8.32)

The quantization interval L is determined by the bandwidth of the detector
Qw = 2irB. It is chosen so that A)3 = 27r/L = (d/3/dw)L w = Aw/v9, and
thus

_ 2rv9 = v9

L Lw B
(8.33)

When we introduce (8.33) into (8.32), we obtain the noise current fluctua-
tions:

(i2) - (Z)2 = (Zn) = 2qILB

with

(8.34)

(nL)I = (8 35)L gvy L .

the d.c. current induced by the local oscillator. Note that the quantum origin
of the noise is from the commutators of the signal and image. We have men-
tioned before that this noise can be viewed as detector current fluctuations
induced by the zero-point fluctuations of the signal and image.

The signal-to-noise ratio follows from the evaluation of the mean square
signal current divided by the mean square noise fluctuations. The signal cur-
rent is

08) = -(asj(oiIiq L

x [a* exp(iwLt)(A, + Ai) - aL exp(-iwLt) (AS + Ai )]joi) jas)

v
= 2gLIaLasI sin[(WL - ws)t +

where 4 = arg(asaL). The time average of the mean square current is

T/2
dt (23)2 = 2q2 (!Lg ) 2

Iasl2Ic LI2T -T/2 L

and the signal-to-noise ratio is

(8.36)

(8.37)
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S (11T) E 2I2 dt (z8)2 - 2g22vs/L)2l asa 2I2 = IasI2 = (ns) (8.38)
2N (in) 2q (v9/L) IaL

signal-to-noise ratio is equal to the average photon number in one ob-
servation time (inverse bandwidth).

In homodyne detection of a signal the noise decreases by a factor of two,
since the idler channel merges with the signal channel and thus does not con-
tribute zero-point fluctuations of its own. This is the quantum interpretation
of homodyne detection.

Offhand, one might expect that the time average of the signal of a homo-
dyne detector does not incur a reduction by a factor of 1/2 as in heterodyne
detection. However, one must note that the signal is independent of the local
oscillator; its phase is not locked with it. From observation time to observa-
tion time its phase relative to the local oscillator changes and thus a statistical
average of these phase variations will also introduce a factor of 1/2.

We have shown in Chap. 6 that the signal-to-noise ratio after amplification
with a linear amplifier of large gain is equal to the photon number received
in a time interval corresponding to the inverse bandwidth. We have found
the same result for heterodyne detection. Homodyne detection has twice the
signal-to-noise ratio. Now, in the case of a linear amplifier we mentioned that
amplification by a phase-insensitive amplifier enables an observer to measure
both the in-phase and the quadrature components of the field, two noncom-
muting observables. The spontaneous noise added in the amplification was
the penalty incurred by a simultaneous measurement of two noncommuting
observables. Homodyne detection gives information only on the component
of the electric field that is in phase with the local oscillator. Thus, a homo-
dyne measurement need not incur the same penalty. Indeed, we found that
the fluctuations in the homodyne measurement are just those associated with
the zero-point fluctuations of the field being measured, the field having been
assumed to be in a coherent state. A homodyne measurement is a noise-free
measurement of the input field; no additional noise is added in the process of
measurement. It is a phase-sensitive measurement. In Chap. 11 we shall study
degenerate parametric amplification, which accomplishes noise-free measure-
ment of one component of the input field, and find the same signal-to-noise
ratio as for homodyne detection.

It is of interest to ask about the current and its mean square fluctuations
in the case when the signal is in a photon number state ins). Then we find
from (8.30) that (IiI) = 0. Does this mean that a display on the scope of the
detector current would show no deflection other than noise? To determine
this, let us ask for the mean square fluctuations. We find, in analogy with
(8.32),

VI(i2) - (i)2 = (Z2) = q2 L2 [nL(ns + 2)] . (8.39)
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These are large fluctuations, proportional to ns + 2. The interpretation is
simple. A photon state has a sinusoidal time dependence of the field, with an
arbitrary phase. A scope display would show such a sinusoid from sample to
sample, but with arbitrary shifts of phase. Hence the average of the current
at any instant of time (any value of x) is zero. But the current does vary
sinusoidally within each sample, and thus the mean square fluctuations are
proportional to ns + 2, roughly proportional to the mean square amplitude
of the sinusoids.

8.6 Heterodyne Detection of a Multimodal Signal

In the preceding section we considered heterodyne detection of a sinusoidal
signal. If the signal is not sinusoidal (an example is an optical pulse), then the
analysis has to be generalized to include a superposition of modes, the sum
of which may represent a pulse, in the same way as a Fourier superposition
represents a time-dependent signal. We write for the current operator

-iq L [A*(t) E(AS + Ai)k - AL(t) E(A' + A2 )k , (8.40)
k k

where we have replaced the c number aL of (8.27) by its time-dependent
generalization

AL(t) _ aL,k exp(-iwL,kt) . (8.41)
k

We have included the same number of image modes as signal modes, since the
detected image band is equal to the signal band. We shall assume that the
image band is unexcited, except, of course, for its zero-point fluctuations. The
expectation value of the current involves the product of the time-dependent
local-oscillator and signal fields:

(z(t)) _ -iq L [Ai(t)A5(t) - AL(t)AS(t)

where

(8.42)

A8(t) _ (As)k } (8.43)
k /

Since the kth component of the signal has a time dependence exp(-iws,kt),
the sum can give an arbitrary waveform.

The fluctuations are obtained by constructing (i(t)i(t)) - (i(t))2. The
operators are put into normal order using the commutators. When this is
done, only the contribution of the commutators remains:
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(2(t)z(t)) - (z(t))2 =
q2

(L)'JAL(t)12 1:([A,,, As] + [Ai, All) k
k

/
= 2Ng21 L

)2

IAL(t)j2 ,

(8.44)

where N is the number of modes in the expansion of the signal. If we introduce
the expression for the time-dependent current, we find

(a(t)i(t)) - (i(t))2 = 2gIL(t)NB, (8.45)

where B = v9/L. How are we to interpret this expression? It is the shot
noise formula for a time-dependent current and a bandwidth NB. Now, the
definition of the bandwidth came from the quantization interval L, chosen
large enough to accomodate the modes used for the quantization. If N modes
participate, the waveform varies within the time interval At = 1/NB; the
net bandwidth is increased by the factor N.

In order to find the fluctuation spectrum, we need to construct the auto-
correlation function involving the average of the currents at different times,
i.e. the expression a (i(t)i(t') + i(t')i(t)). The current operator was defined
within the time interval At = 1/B = L/v9. When the current waveforms are
shifted apart by the time dt, the fluctuations are uncorrelated and average
to zero. Hence one may write

2
i(t)i(t') + i(t')i(t)) - (a(t))2 = 2gIL(t)8(t - t') , (8.46)

where the delta function is of magnitude 1/Lt in the time interval It - t'J <
At/2 and zero outside this time interval. The Fourier transform of this ex-
pression gives us the proper shot noise formula. If the bandwidth is increased
by a factor N, the fluctuations increase by the same factor.

8.7 Heterodyne Detection
with Finite Response Time of Detector

Thus far we have derived relations for the current operator of heterodyne
detection without considering the finite response time of the detector. The
current produced by the beat between the local oscillator and signal is unaf-
fected by the finite response time if the beat frequency is much smaller than
the inverse response time. When this is not true, then the output signal of
the detector is reduced. The response times of the fastest detectors are of
the order of 10 ps. Within a time interval -r of 10 ps, the optical radiation
contains many cycles (of the order of 10,000). Hence the quantization interval
L < v9T can be picked long enough that the photon concept can be applied.
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If the response of the detector is limited by a simple R-C time constant,
the output current operator obeys a simple linear differential equation. The
solutions of linear operator equations are the same as the solutions for c-
number time functions. Hence, we may describe the output current operator
i(t) by the convolution integral

MI(t) = f dt' h(t - t')a(t') ,

00
(8.47)

where h(t) is the detector impulse response and charge conservation dictates
that f 0 dt h(t) = 1. The expectation value of the current is

(I(t)) =
J

dt' h(t - t')(i(t'))00 (8.48)

The expectation value of the current was computed in (8.36). The convolution
in the time domain becomes multiplication in the frequency domain. Thus,
with

fdtexP(iwt)(t(t)),H(w) =
J

dtexp(iwt)h(t) and (i(w)) =
21r

(8.49)

we have from (8.48)

(I(w)) = H(w)(z(w)) (8.50)

In the case of two sinusoidal signals beating in the balanced heterodyne
detector, the current is a sinusoid. The signal is reduced by the factor l H(ws -
wL)l-

The autocorrelation function is computed analogously:

2
(I(t)I (t') + I (t')I(t))

f dt" J 00
dt"' h(t - t")h(t' - t2 (a(t")i(t"') + a(t"')a(t")) .

(8.51)

The operators in the autocorrelation function can be put into normal order. If
the excitation is by coherent states, the normally ordered part of the expres-
sion can be written as a product of expectation values. The term resulting
from the commutators is derived as in (8.46). We obtain for the autocorrela-
tion function of the current
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2 (I(t)I(t') +I(t')I(t))

= 00

dt"J. dt'll h t-t" h t'-t"' 64e)) t

+2gIL J dt" h(t - t")h(t' - t") .

(8.52)

The first part is the signal part; the second part gives the fluctuations. The
evaluation of the spectrum of the current is left as a problem at the end of
the chapter.

8.8 The Noise Penalty of a Simultaneous Measurement
of Two Noncommuting Observables

The theory of quantum measurements has been extensively discussed in the
literature and is still a subject of controversy. In later chapters we shall discuss
the issues in greater detail and argue that there exists a self-consistent point of
view on the meaning of quantum measurements and the concept of "physical
reality" as raised by Einstein, Podolsky, and Rosen [73]. At this point, we have
investigated a special case of a measurement apparatus, on the basis of which
one may gain some insight into the the meaning of a quantum measurement.

A quantum measurement need not introduce noise, or uncertainty. An
ideal photodector detects the incoming photon flux and emits carriers that
can be counted. In principle, the number of incoming photons can be deter-
mined with no uncertainty. The uncertainty underlying quantum theory and
stated by Heisenberg's uncertainty principle refers to the properties of the
state and not directly to the measurement of the state. The ideal photode-
tector may be considered noise-free if applied to the measurement of photon
states.

Heterodyne detection has been found not to be noise-free. Heterodyne de-
tection permits the simultaneous measurement of the in-phase and quadra-
ture components of an electric field and it is this property of the detector
that calls for the addition of noise to the signal by the detector. A similar
situation exists with linear amplifiers, which also permit such a simultaneous
measurement if they possess large gain.

Arthurs and Kelly [15] addressed the issue of a simultaneous measure-
ment of two noncommuting variables in a classic paper in 1965. They went
through a detailed analysis of the coupling of a system containing the ob-
servables to a measurement apparatus, and of the measurement carried out
with the apparatus. They showed that the estimation of the values of two
noncommuting observables from the measurement incurred an uncertainty
penalty that at least doubled the uncertainty predicted from Heisenberg's
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signal

zero-point fluctuations

10)

c
Measurement of

c(l)
a

d

Measurement of
d(2)

Fig. 8.4. A beam splitter for simultaneous measurement of amplitude and phase

uncertainty principle. The optical measurements discussed thus far afford a
very simple illustration of this general proof.

The homodyne detector does not add noise of its own. Its noise at the
output is produced by the fluctuations of the signal. It measures a single ob-
servable, the component of the electric field in phase with the local oscillator.
Both components of the electric field can be measured in a setup such as
shown in Fig. 8.4. A beam splitter splits the incoming signal into two com-
ponents. Two homodyne detectors measure the two components separately
by adjustment of the phases of the respective local oscillators. This is an
example of a simultaneous measurement.

In the following we shall show that the operators representing the in-phase
and quadrature components of the signal after the beam splitter commute.
Thus a simultaneous measurement of these operators is possible without the
measurement of one observable affecting the measurement of the other. Phys-
ically, this is of course obvious since a measurement apparatus can intercept
each of the outgoing beams c and d independently. Mathematically, the find-
ing is of interest since it shows that the commutation has been brought about
by the introduction of the vacuum fluctuations of the unused port of the beam
splitter.

The beam splitter is represented by a unitary scattering matrix that is
power-conserving. In the balanced heterodyne measurement apparatus, we
represented the beam splitter by the unitary scattering matrix

1

I

1 -il
-i 1

The response of the beam splitter is thus
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c= 1 (a-ib),

d = 1 (-id + b) .

(8.53)

(8.54)

The in-phase and quadrature operators of the beams c and d, respectively,
are

c(l) = 2 (c + at) =
2-,F2

(a - ib + at + ibt) , (8.55)

d(2) = 1 (d - dt) = 1 (-ia + b - iat - bt)
2i 2ivf2-

The commutator of a(') and d(2) is

[a(l)' d(2) ]
8

(-[a, at] + [b, bt] + [a, at] - [b, 6t]) = 0 .

(8.56)

(8.57)

Indeed, the observables commute and there is now no impediment to mea-
suring them simultaneously. What has happened is that the vacuum port of
the beam splitter has introduced fluctuations (or commutators) that change
the in-phase and quadrature components of the incoming signal into commut-
ing operators. The measurement can now be carried out with two homodyne
detectors independently and in a noise-free manner in each beam after the
beam splitter. It is clear, however, that a noise penalty has been incurred.
Only half of the original signal intensity impinges upon each of the two detec-
tors. The signal-to-noise ratio inferred from the measurement is half of that
which would have been attained if the signal impinged directly on one of the
detectors.

8.9 Summary

We have studied the current induced in square-law detectors as well as pho-
todetectors. The current is accompanied by shot noise. If shot noise is the
most important noise in the detector circuit, then the signal-to-noise ratio
of a heterodyne photodection circuit of unity quantum efficiency is equal to
the number of photons received in a time corresponding to the inverse band-
width of the detection. The quantum analysis used the concept of the current
operator. The shot noise was interpreted in the quantum analysis as current
fluctuations induced by the zero-point fluctuations of the field. The results
of the quantum analysis agreed with those of the classical approach.

Balanced detection was discussed as a means of suppressing fluctuations
of the local oscillator. The quantum analysis of the balanced detector led us
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to a surprising interpretation of the source of the shot noise: we found that
the cause of the shot noise is the zero-point fluctuations of the signal and
image. In this respect, the quantum picture mimics the original purpose of the
balanced detector, namely cancellation of the oscillator noise. In the quantum
picture we found that the zero-point fluctuations of the oscillator field can be
ignored and that the entire noise excitation is attributable to the fluctuations
entering the signal port of the beam splitter in the signal and image bands. In
homodyne detection the signal and image bands merge and thus the noise is
due solely to the zero-point fluctuations of the signal itself. One may consider
the homodyne measurement to be a noise-free measurement of the incoming
signal field.

Finally, we looked at the noise penalty incurred in a simultaneous mea-
surement of the in-phase and quadrature components of the electric field,
two observables with noncommuting operators. We showed that the uncer-
tainty in the values of these two observables inferred from the measurement
is double that of the Heisenberg uncertainty.

Problems

8.1 What is the value of the d.c. current producing the same mean square
voltage fluctuations due to shot noise across a 50 S2 load resistor as the
thermal noise at room temperature? Note that for a detector current greater
than this value, the thermal noise can be neglected.

8.2* In a heterodyne receiver, the local oscillator mode at the detector
has the profile exp(-r2/wL) exp(iOr2/wL)/wL. The signal has the profile
exp(-r2/ws)/ws. Show how the signal decreases with deviation from a per-
fect mode match.

8.3 A non-return to zero (NRZ) bit pattern at the optical carrier frequency
wo is incident on a detector. NRZ implies that two "ones", represented by two
rectangles (of current) that follow each other, merge into a single rectangle
of twice the width.

(a) If the pattern is random, i.e. the zeros (blanks) and the ones (rectangles
of height A and width To) occur randomly, find the spectrum of the
waveform. Under the assumption that the numbers of zeros and ones are
equal on average, the average rate of carrier generation (i.e. the average
rate of photons) is (R(t)) = (1/2)A.

(b) Find the spectrum of the detector current.

See Appendix A.M.
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8.4* A return-to-zero (RZ) bit pattern at the optical carrier frequency W.
is incident on a detector. RZ implies that the "ones" are pulses, the zeros
blanks, and there is a clear separation of two ones following each other. The
pulses are Gaussians Ao exp(-t2/2rro) and their width -ro is 1/8 of the symbol
interval.

(a) If the pattern is random, i.e. the zeros (blanks) and the ones occur ran-
domly, find the autocorrelation function of the waveform. Make the as-
sumption that the numbers of zeros and ones are equal on average.

(b) Find the spectrum of the detector current.

8.5* A Mach-Zehnder interferometer with two 50/50 beam splitters has a
phase delay difference between the two paths of LB. The output beam splitter
is followed by a balanced detector.

(a) Find the output annihilation operators a and d of the Mach-Zehnder

interferometer in terms of the input operators a and b.
(b) If the Mach-Zehnder interferometer is excited by two coherent states

I a)1/ ), find the charge collected by the detector.

8.6 A photon number state "has no phase". Yet a photon state In) can
interfere with itself. To show this determine the charge (Q) collected by a
balanced detector at the output of a Mach-Zehnder interferometer with the
same photon state at input (a) as analyzed in the preceding problem.
8.7 Determine the charge in the setup of the preceding problem for an in-
cident photon state Ink)Int), where Ink) is a photon state of propagation
constant /3k and Ins) is a photon state of propagation constant 3e.

Solutions

8.2 The detector, illuminated by a signal field ES (r) and a local-oscillator
field EL(r), produces a current whose magnitude is proportional to

J dSEsEL

oc
1

WLws

f27r roo / r2

J dOJ rdrexp (- 2
0 o \ WL ws

/exp
\ WL

The integral gives

2ir oo / r2
1

dO J r dr exp I - w
w 2 -Lws o o \ L

(w5/WL + WL/ws)2 + 02 (ws/wL)2
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This expression has a maximum of 7r/2 when cp = 0 and ws = WL. Hence the
deterioration of the signal is

2

(ws/wL +WLlws)2 + c2 (w3/wL)2

8.4 The autocorrelation function is, classically,

(A(t)A(t + T)) ,

where

A(t) _
>Aoexp-(t-ti)2

2,r02

The ensemble average can be replaced by a time average, if the process is
ergodic:

r
(A(t)A(t + T)) = T J dt A(t)A(t + r)

= TNJ dtAoexp-ZT2 exp-(t2 2)2

0

where N is the number of pulses in the long time interval T. We have for N
1 TN=1
2 8To

where the 1/2 is due to the fact that the probability of occurrence of a pulse is
1/2. The pulses are sufficiently well separated that overlaps can be neglected.
Thus,

(A(t)A(t+T)) = 16
ToA2J dtexp-t2+2T2

T)2

0

2 2

16T
Ao J dt exp -

tT2 tTo
exp - 2T2

0 0 0

V' 2
T2

,
16

AO eXp -
4T02

2

TR(W) f dt e 16 Ao eXp _ 4-T
0

= 16'A0I2 exp -w2To

We have for (R(t))
r 2

(R(t)) = 1 N J dt Ao exp - ZT2

=
7;

NTOA0 2-7r = 16Ao.
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8.5

8. Detection

(a) The operators pass through the Mach-Zehnder interferometer just like
classical complex amplitudes. The scattering matrix is

-i elaa/2

0iL
00 a0sin - - cos -
2 2

AO
- sin

a
-cos

22

The output is

0 1 1 iJ

T2 -i

-1

AB/2e-'

c = i [sin -a - cos Ideb]

d = -i cos QO

a + sin
IA0

bl

(b) The detector charge difference is

(Q) = &16 - dtd)

= q(cos z10(btb - ata) - sin DO(atb + bta))

If we take the expectation value for the coherent product state we find

(Q) = q(ctc - dtd) = q(cos AO(1,312 - Ia12) - sin L10(ca*Q

+ Q*a)) .

0



9. Photon Probability Distributions
and Bit-Error Rate of a Channel
with Optical Preamplification

Thus far we have developed the equations of the evolution of operators as
transformed by linear systems. We pointed out that strictly linear transfor-
mations occur only in passive circuits described by the linear Maxwell equa-
tions. Active circuits behave linearly only approximately, up to a maximum
intensity. The scattering matrix of the operators of a linear system and the
commutators of the noise sources completely describe the system. Average
values and mean square fluctuations can be computed.

In this chapter we study the photon statistics of an attenuator repre-
sented by a beam splitter. In the process, we introduce generating functions
that greatly simplify the analysis. The statistics of spontaneous emission and
stimulated emission of photons in an amplifier are determined. Using this
analysis we can address the practical problem of determining the bit-error
rate of a digitally coded optical communication system using optical pream-
plification, the kind of system which gives the best high-speed performance
in terms of minimum bit-error rate at a given signal power.

When the bit-error rate is very small, say less than 10-9, then it is easy to
make the transmission error-free through very simple error correction codes
with a negligible increase in message length. For all practical purposes, one
may consider the transmission to be error-free in the sense of communication
theory and compare the power used in transmission with that predicted by
the Shannon formula. We derive Shannon's formula for the number of pho-
tons required for transmission of a given amount of information in a noisy
environment and compare the result with the performance actually achieved
with simple one-bit coding and detection after optical preamplification. Cur-
rent practice uses a definition of the noise figure for the characterization of
optical amplifiers that is based on the mean square fluctuations of the photon
number. The definition of the noise figure used in Chap. 5 is based on mean
square amplitude fluctuations. We conclude the chapter with a discussion of
the relation between the two definitions.

9.1 Moment Generating Functions

In our analysis, we deal with creation and annihilation operators, operators
of the electric field, and photon number operators. Creation and annihilation
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operators, while convenient for analysis, are not Hermitian and thus are not
directly observable. The field operators and the photon number operators are
Hermitian, and thus observable. One may ask for the expectation values of the
moments of these observables. For example, one may ask for the rth moment
of the field, (I Erl ), or the rth moment of the photon number, (I(AtA)rI). Here
we use the creation and annihilation operators At and A as originally defined
in Chap. 6. Another important set of moments are the falling and rising
factorial moments of photon number, represented by the operators AtrAr
and ArAtr. Consider first the expectation value of the operator AtrAr. If the
system is in a superposition of number states In), each of the r operations by
A on the ket lowers the photon number by one. A total of r such operations
multiplies the final number state In - r) by n(n - 1) ... (n - r + 1). An
analogous development applies to the operation of the creation operator on
the bra. The final result is a term with the bra (n - rI in front, the ket
in - r) at the end and a multiplier n(n - 1) ... (n - r + 1). This is the falling
factorial moment of order r. Consider a state V) = En cnIn). For this state
the expectation value of the falling factorial moment Fr is

m=oo n=oo

Fr = c,*n(mf AtrAr cnin)
M=0 n=0

m,n=oo

c,tncn [m(m-1)...(m-r+1)][n(n-1)...(n-r+1)]
m,n=0

x (m - rIn - r)

M=00

E p(n) [n(n - 1)...(n - r + 1)] _ (n(n - 1)...(n - r + 1)).

n=0
(9.1)

Here Ic,, 12 = p(n) is the probability of n photons in the state. The com-
plete set of moments gives full information about the probability distribution.
It is convenient to construct a generating function for the falling factorial mo-
ments by the definition

r=oo r r=oo r

F() r Fr = E 1)...(n - r + 1)) . (9.2)

The generating function contains full information about all falling fac-
torial moments. In order to determine the rth moment, we expand into
a Taylor series; r! times the rth-order term gives the desired moment. In a
similar spirit we may define the probability generating function

n=oo

E np(n)
n=0
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which contains full information about the probability distribution in its Tay-
lor expansion. The falling-factorial-moment generating function is closely re-
lated to the probability generating function. Indeed, from its definition

n=oo r=n r
E E -jp(n)n(n - 1)...(n - r + 1)

n=0 r=0 r.

n=oo

1: p(n) (1 + )n = P(1 + ) .
n=0

The falling-factorial-moment generating function is equal to the probabil-
ity generating function with its independent variable shifted by 1. Another
generating function is also of interest; this is the rising-factorial-moment gen-
erating function, defined by

r=oo r
E -(JA AtrI)
r=0

r=oo n=oo tr
= E ,Ip(n)(n + 1)...(n + r).

r=0 n=0

By a manipulation similar to that used to relate the falling-factorial-
moment generating function to the probability generating function, we can
establish the relation between the rising-factorial-moment generating func-
tion and the probability generating function:

r=oo n=oo tr
1)...(n + r)

r=0 n=0

n=oo n

1 1 (1 1 ) p(n)

11 P(11)
The characteristic function is the Fourier transform of the probability

distribution and is directly related to the probability generating function
P(e):

n=oo

E einlp(n) = P(e`£) .
n=0

Since Fourier transform and inverse transform relations are well known, the
characteristic function is particularly useful. Note that the characteristic
function can also be written
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C(6) _ (Iexp(i6n)1) . (9.7a)

Two important probability distributions of photons have been encountered
previously: (a) the Poisson distribution and (b) the Bose-Einstein distribu-
tion. We shall now determine their probability generating functions.

9.1.1 Poisson Distribution

The Poisson distribution has been shown to be the photon distribution of a
coherent state:

pp(n) = e- (n)
(n)n

n1

The probability generating function of the Poisson distribution is

C

n=oo

PP (b) = E 6ne-(n) (n)n = e(C -1)(n)
rI

9.1.2 Bose-Einstein Distribution

1 n

1

((n)

)+(n) 1+(n)

The Bose-Einstein distribution pertains to radiation in thermal equilibrium.
The photon number in each mode is governed by the probability

PB-E(n) =

Its probability generating function is

n=oo

1( ) ( (n)
) n

1 +
n)

1 + (n)n=0

1
n-oo

I (n) 1 n

1+(n) 1+(n)
n=O

(9.8)

(9.10)

(9.11)

1 - (n)( - 1) .

The relationships among the various generating functions are useful and
will be employed through the remainder of this chapter. Thus, (9.4) gives the
generating function for falling factorial moments in terms of the probability
generating function. For a Bose-Einstein distribution, we have from (9.11)
and (9.4)

Fs (E) =
1

(9.12)
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Referring back to the definition of F(C), and carrying out the expansion of
(9.12), we find that, for a Bose-Einstein distribution,

Fr = (n(n - 1) ... (n - r + 1)) = r! (n)' . (9.13)

In particular, if we take the second-order factorial moment F2 = 2(n)2 =
(n(n - 1)) and construct from it the mean square fluctuations ofn, we obtain
the well-known Bose-Einstein formula:

(n2) = (n) + 2(n)2 , (9.14)

or

(n) + (n)2 . (9.15)

The second term is called the classical fluctuation term, and the first term is
of quantum origin. Indeed, if one identifies hew(n) with the energy, then the
mean square fluctuations of the energy are given by (9.15),

(J )2(n) + (hw)2(n)2 . (9.16)

The second term is indeed the square of the average energy, as found from the
classical field in (4.109). The first term predominates at low photon number
and is of quantum origin, related to the zero-point fluctuations of the field
that require a quantum treatment.

The characteristic function, the Fourier transform of the probability dis-
tribution, is useful when evaluating the "tails" of probability distributions.
Indeed, we know that the behavior of a function f (t) of time t at large values
of t affects the behavior of its Fourier transform f (w) at small values of w.
When evaluating error rates, we look for a proper representation of the prob-
ability distribution in the wings of the distributions. Hence, we are interested
in the proper representation of the characteristic function for small values of
s.

9.1.3 Composite Processes

Some statistical processes are composites of several independent processes.
Thus, one may ask for the probability of n photons if two independent Poisson
processes contribute to the process. To answer this question, we show first
of all that the probability generating function of a composite process is the
product of the generating functions of the individual processes.

Suppose process (1) and process (2) contribute nl and n2 photons each,
with probabilities pl (nl) and p2(n2), respectively. The net number of photons
is n = nl + n2. The probability of finding n photons is

n

p(n) = E pi(ni)p2(n - n1). (9.17)

n1=0
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It is convenient to rewrite this expression in terms of a sum that extends
from minus infinity to plus infinity. This is done by defining the probability
functions pl(nl) and p2(n2) to be zero for negative arguments:

p(n) = "=-oop1(nl)p2(n - ni) (9.17a)

Now, consider the generating function P(n) of p(n):

00 +00 +00

P() _ np(n) E E n1)
n=-oo n=-00 ni=-oo

00 +00
= tn1

Pi(nl) bn2p2(n2) =
n1=-oo n2=-o0

(9.18)

Thus, we have shown that the generating function of the composite pro-
cess is the product of the generating functions of the individual processes.
This result can be used effectively. We first show that a process that is a
composite process of two Poisson processes is also a Poisson process. For this
purpose we apply (9.18) to (9.8):

exp[-( - 1)(nl)) exp[( - 1)(n2)l

= exP[( - 1)((ni) + (n2))]
(9.19)

The compound generating function has a Poissonian dependence with the
average photon number equal to the sum of the average photon numbers of
each of the two processes.

Another interesting example is the generating function of a composite
Bose-Einstein distribution. If the composite process is composed of g inde-
pendent processes, all with the same average photon number (n), then it
is said that the Bose-Einstein process is g-fold degenerate. Its generating
function is, from (9.10) and a simple generalization of (9.18),

P(O= 1

s

C1- (n)( - 1)/
(9.20)

The mean square fluctuations are found from the first and second derivatives
of the probability generating functions

n=oo n=oo

d'P()IE=1 = non-1p(n)IE=1 = E np(n)If=1 = g(n)
n=O n=O

(9.21)

and
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d2 n=oo
nic\ - - /_ 1 vn-2_i_\

d2
n=0

n=oo
E n(n - 1)p(n)

n=0

= g(g + 1)(n)2 .

The mean square fluctuations are

(zln2) = (n2) - (n)2 = g(n)(1 + (n))

311

(9.22)

(9.23)

Remember that (n) is the average photon number of each individual Bose-
Einstein process. Here, g(n) is the average photon number, and (n) is the
average photon number divided by g. Degenerate Bose-Einstein fluctuations
are smaller than the fluctuations of the nondegenerate case of the same av-
erage photon number. The same result (9.23) could have been obtained by
noting that the mean square fluctuations of independent processes add:

j=g j=g

(zAn2) = E(nj)(1 + (nj)) = g(nj)(1 + (nj))
j=1 j=1

If (n) ( - 1) << 1, then the probability generating function reduces to

[1 - (n)( - 1)]-[1/ln)(E-1)Is(n)(E-1) = exp[g(n)( - 1)] . (9.24)

This is the generating function of a Poisson distribution with average
photon number g(n). Thus, we find that a high degeneracy transforms the
Bose-Einstein statistics of a process with (n) « 1 into Poisson statistics.
This is the reason why detection of light from an incandescent lamp with a
photodetector leads to Poisson distributed carriers, since the coherence time
T of the light (of the order of femtoseconds) is much shorter than the inverse
bandwidth 1/B of the photodetector. The degeneracy factor of the radiation
is g = 1/(BT). If the photon number per mode is not much smaller than
unity, then, according to (9.23), (,An2) = g(n)(1+(n)) > g(n), and the mean
square fluctuations remain larger than Poissonian.

9.2 Statistics of Attenuation

In Chap. 7, we evaluated the field fluctuations produced by attenuation and
amplification. The fluctuations of the incident photons determine, at least
in part, the noise accompanying detection. In preparation for the study of
such detection systems we now concentrate on the photon fluctuations as
influenced by attenuation and by amplification. For the evaluation of photon
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statistics, it is convenient to revert to annihilation and creation operators of
photons within a certain time interval, which we indicate with capital letters.
We consider only forward-propagating waves (compare Sect. 6.10)

B=vIZA+1V. (9.25)

The commutator of the noise source is chosen so that commutators are pre-
served in passage through the attenuator:

[N,Nt]=1-G. (9.26)

If the states of the noise operator are in the ground state, the falling-factorial-
moment of the output photons has no contribution from the loss reservoir
[16, 74]. Indeed

Fr = (Inb(nb -1) ... (nb - r + 1)I) = (IBtrEri)

= (I(/LAt+Nt)r(VLA+N)rI) ='Cr(IAtrArI)
(9.27)

Suppose that the input is in a photon eigenstate Ina,). Then the factorial
moment of the output photons is

na

Grna(na - 1)...(na - r + 1) _ (1 +)na

r-o r.
(9.28)

The generating function of the probability distribution function is, according
to (9.4),

Pnb(f) = Fnb(6 - 1) = [1 +,C(e - 1)]nn . (9.29)

The probability of transmission of nb photons with na incident photons
is obtained from the coefficient of mth order in in an expansion of the
generating function Pnb (C) in powers of C:

I Gn,,(1 -,C)"`°-nn

/P(nbina) = (nbna
(9.30)

We wrote the probability (9.30) as a conditional probability of nb output pho-
tons for na input photons. This is the probability of a binomial process. The
photons are passed to the output port with probability C and lost with prob-
ability 1-,C. The first photon is picked in na ways, the second in na -1 ways,
up to the last, which is picked in na-nb+1 ways. Since the photons are indis-
tinguishable, the probability has to be divided by nb! It is rather remarkable
that the statistics of the binomial photon distribution for an input photon
state Ina) are the result of the noise source, even though, when asking for the
falling-factorial-moment generating function, no explicit mention was made
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of the noise source. Had we asked for the rising-factorial-moment generating
function, the noise source would have entered into the computation.

Next, we prove that a Bose-Einstein distribution passing through an at-
tenuator at zero temperature remains Bose-Einstein. This makes physical
sense, since the Bose-Einstein distribution is the thermal distribution. A
thermal excitation passing through an attenuator at zero temperature must
emerge as a thermal distribution at a lower temperature. The generating
function of the Bose-Einstein distribution is, from (9.11),

P ` 1
B -r, 1-(n) e -l ) .

00

_ Pnb() 1 1 (na) 1nn

nn=0
1+(na) +(na)

Consider next the generating function of the probability distribution p(nb)
at the output of an attenuator, when a Bose-Einstein distribution is fed into
the input:

00 00

na=0 nb=0

00 1
1 (na)

nn

_ [1+G(C -1)]nn1+(na)
+(na)

0na=

(9.31)

(9.32)

1

1 - G(na)(e - 1)
.

This is the generating function for a Bose-Einstein distribution with an av-
erage photon number of G(na).

Next, we prove that a Poissonian distribution remains Poissonian after
passing through an attenuator. By a method analogous to the derivation for
the Bose-Einstein distribution, we obtain

00 00

E enbp(nbI na)pp(na)
na,=0 nb=0

00 )nn

_ Pnb(e)e-(na)

n.=0
na

(9.33)

00

_ E [1 + G( - 1)]"°e-(na) (na)n° _
na, -0

na l

This is the generating function of a Poisson process with average photon
number G(na).
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The important conclusion is that attenuated Poisson and Bose-Einstein
distributions remain Poisson and Bose-Einstein distributions, respectively.
If, for example, the photons in the pulses of a signal source in a communi-
cation system are Poisson-distributed, after attenuation they arrive Poisson-
distributed at the receiver.

9.3 Statistics of Optical Preamplification
with Perfect Inversion

Optical digital communication uses pulses to represent a "one" and empty
time invervals to represent a "zero". The simplest means of detection is di-
rect detection; the received photons are converted into charge carriers. In
principle, photodetectors could be noise-free, their current could be a per-
fect replica of the incident photon flow. In practice, the detectors are noisy.
For this reason, the most sensitive high-bit-rate optical receivers use optical
preamplification.

Preamplification can remove, or reduce, the influence on the signal-to-
noise ratio of the components following the preamplification, including the
detector. In this section we study the probability distribution of the photons
at the output of an optical preamplifier. The analysis is simple if we assume
that, through filtering, only noise within the signal bandwidth is passed on to
the receiver. In other words, the photons of spontaneous emission and those
of the signal have the same bandwidth. The response of the amplifier is

f3 = v/-GA + N , (9.34)

where the commutator of the noise source required for the conservation of
the commutator from input to output is

[N, Nt] = 1 - G < 0 . (9.35)

Thus, N has to be interpreted as a creation operator and Nt as an annihila-
tion operator. If the gain medium is not perfectly inverted, as discussed in the
next section, N is a superposition of a creation operator and an annihilation
operator. The amplifier noise is determined by the state of the noise source.
The state of the lasing level can be considered to be the ground state, if it is
equilibrated by a reservoir at or near room temperature.

With the noise source in the ground state, the rising factorial moments of
the output photon number do not contain a noise source contribution. Thus,
it is convenient to determine the rising factorial moment for the evaluation of
the probability generating function [16,74]. We start with the rising-factorial-
moment generating function for a photon state input with photon number
nQ :
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00 00

(l.rEtrl) _ r! Gr(I ArAtrl)
r=0 r=0

00 Cr - 1 na+1
1)...(na+7)

r=0

(9.36)

The probability generating function of the output photons nb for an in-
put photon state na is obtained from the rising-factorial-moment generating
function through the relation (9.6):

1

Pnn R I 1 - - ) = 1 I )1
In,

(9.37)

Figure 9.1a shows a probability distribution for na = 5 and G = 10. The
contribution of ASE is to broaden the distribution for the output photons.
Figure 9.1b shows the distribution for na = 20 and G = 10. The distribution
is more symmetric than that for the lower input photon number.
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Fig. 9.1. Probability distribution of photons at amplifier output: (a) na = 5, G =
10; (b) na = 20, G = 20
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The probability distribution represented by the generating function (9.37)
has a simple interpretation. First of all, note that it is composed of two
factors. Since the generating function of the probability distribution of two
independent statistical processes is equal to the product of the generating
functions of the individual processes, we may disassemble the product, and
look at one term at a time and study its statistical properties. Consider first
the generating function of photons induced by input photons:

Pl () = [G - (G - 1)ei na

00

m! S
- tna.

(na(na+1)...(na+m-1))pmqn+mm0M=

(9.38)

where
1 1p=1-G, q=

G*
The coefficient of the term fn°+m gives the probability of na + in output

photons. This probability describes a process with its lowest photon number
equal to na. The photon numbers are obtained by a game of chance with
the following rules [74]. The probability of obtaining one more photon with a
starting number of na photons is the product of the probability p = 1 - 1/G
of generating a photon, and the probability q = 1/G of not generating a
photon to the power na + 1, times the number of starting photons. The
probability of two additional output photons is, analogously, equal to the
probability that one photon has been generated times the probability that
the na + 1 photons will generate one more. Since the two generated photons
are indistinguishable, division by 2 is necessary; and so on.

The second statistical process is represented by the generating function

1 _
G (G 1) - E pmq6m (9.39)

m=0

This process can be described by a game in which a photon is borrowed from
the "bank". The game of chance described above is carried out. After the
game, the borrowed photon is returned to the "bank".

Consider first the case of zero photon input. Then

P 1 (9.40)() = G - .(G - 1)
.

This is the probability generating function of a Bose-Einstein distribution
with average photon number G - 1. Thus, an amplifier with no input pro-
duces a Bose-Einstein distribution, if the observation time is adjusted to
fit the inverse filter bandwidth. One may characterize the output by replac-
ing the internally generated noise by a source at the input. If we do this in
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the present case, then the equivalent source corresponds to one photon per
mode. Now, we remember that the power of the equivalent input noise source
corresponds to the excess noise temperature. For the erbium amplifier wave-
length of 1.54 µm, hwB expressed as a noise temperature corresponds to a
temperature of 12, 000 K.

Consider next the generating function for the output photons of an am-
plifier with a Poissonian input. We have

00 00

PP(f) = E E fnbp(n'bina)e-('aa)

(na),ra

n,,=0 na=0
nal

00 ) ( )na

= i na na

na=0
na l

J .

1

IG
1

G - (G - 1) eXp - (G - 1) - (n,,)

(9.41)

The generating function can be used to to derive the first and second moments
of the output photon distribution. The first-order moment is

(nb) = G(na) + G - 1 . (9.42)

The average output photon number consists of the amplified average input
photon number and the average spontaneously emitted and amplified photon
number. The second falling-factorial-moment is obtained from the second
derivative of the probability generating function:

z

(nb(nb - 1)) = PP(S)E=1

= 2(G - 1)2 + 4G(G - 1)(na) + G2(na)z

The mean square fluctuations are

(anb) = G(na) + 2G(G - 1)(n,,) + G(G - 1)

(9.43)

(9.44)

This expression has a simple physical meaning. The mean square fluctua-
tions consist, in part, of the Poisson fluctuations of the signal photon num-
ber, G(na), and in part of the Bose-Einstein fluctuations, G(G - 1). Finally,
there is an "interference term" of the Bose-Einstein and amplified Poisson
fluctuations, 2G(G - 1)(na). Note that the noise due to the interference term
is much larger than the Poisson value. In the case of large input photon num-
ber, (na) >> 1, and large gain, the fluctuations at the output are entirely due
to the interference term: (.,Anb) zz 2G2(na).
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Finally, consider the generating function in the case when the input is
Bose-Einstein distributed. We show that the output is also Bose-Einstein
distributed with a new average photon number of G(na) + G - 1:

00 n

1
(na)

/

a

na =0

00 1 r 1 na 1 ( (na) ) na

0 G-C(G-1) 1+(na) 1+(na)na=0 IL

n
1 1

00
(na)

Y- [G_(G_1)1+(na),
a

1 1 1

G - (G - 1) 1 + (na) 1 - 1)]} [(na)/(1 + (na))]

1

(9.45)

Thus, amplification of a Bose-Einstein-distributed photon flow by an ampli-
fier with perfect inversion maintains the Bose-Einstein distribution.

Another important scenario must be included. Thus far we have consid-
ered the nondegenerate case, i.e. the signal and the spontaneous emission
belong to one single mode. Realized experimentally, this means that a polar-
izer and an optical filter are used at the amplifier output. The polarizer is
aligned with the signal polarization, and the filter passes the signal and the
spontaneous-emission photons within the same spectral window. When the
filter bandwidth Bf of the optical filter following the amplifier is wider than
the signal bandwidth Bs, the noise radiation consists of a set of modes, one
each assigned to every spectral slot of width Bs; the total number of modes
is g = B1 /Bs, with g the so-called degeneracy factor. In this case the spon-
taneous emission is degenerate. In the absence of a polarizer, g = 2Bf/Bs. It
is of interest to determine the generating function for the degenerate Bose-
Einstein case. More spontaneously emitted photons pass the filter. As long
as the detector detects all these photons, they are indistinguishable from the
photons within the signal bandwidth and appear as charge carriers in the de-
tector output. We have seen earlier that the probability generating function
for na incident photons contains a signal part and a spontaneous emission
part. When applied to the present case of a broadband filter it becomes

s n

Pna () = 1
[G - (G - 1)6J [G - (G - 1)j (9.46)

When the input signal photons are Poisson distributed, the generating func-
tion becomes (compare (9.41))
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9

PP,deg(o = [G - (G - exp IG G(G (n,)] . (9.47)

As before, we may evaluate the first- and second-order moments of the output
photons, with the result

(nb) = G(na) + g(G - 1) (9.48)

and

(nb) - (nb)2 = G(na) + 2G(G - 1)(na) +gG(G - 1) . (9.49)

The amplified signal fluctuations and the coherence term have not changed.
Only the spontaneous-emission fluctuations have increased by the factor g.
This expression can also be interpreted in the frequency domain. The degen-
eracy factor represents the bandwidth. The contribution of the spontaneous
emission increases linearly with an increase in bandwidth. This is a property
of white noise (frequency-independent spectral density).

We have shown that the replacement of the variable in the probabil-
ity generating function by exp(is) transforms it into the characteristic
function C(s), which is the Fourier transform of the probability distribu-
tion. Thus, we may obtain the probability distribution as the inverse Fourier
transform of C(s). In this way we find that the probability distribution of a
degenerate Bose-Einstein distribution is

p(n)B-E, deg = I'(n(+
1)r(g)

(1 + (n))-9 (1 + (n)

yn
(9.50)

where F is the gamma function. Figure 9.2 shows some of these distributions.

-n

-25

-30

Fig. 9.2. The degenerate Bose-Einstein probability distributions for G - 1 = 50,
and g = 1, 10, and 20
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-n
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Fig. 9.3. The probability distribution for inputs of (na) = 30 and (na) = 160;
G-1=99

The probability distribution of a degenerate Bose-Einstein distribution
convolved with the Poissonian distribution of an input signal of average pho-
ton number (na,) and represented by the generating function (9.47) can also
be written down in closed form [76]:

pP,deg(n) _
(G -n 9)n

exp(-(na))L9 1
(na)1

nG
(9.51)

Here Ln-1 is the generalized Laguerre polynomial. This distribution is shown
in Fig. 9.3.

9.4 Statistics of Optical Preamplification
with Incomplete Inversion

Next we consider the general case of an incompletely inverted medium with
a filter of bandwidth wider than the signal bandwidth. Some aspects of the
problem are self-evident without a detailed analysis. First of all, an ampli-
fier with incomplete inversion is a system of amplifying layers, representing
the upper level, and attenuating layers, representing the absorption by the
lower level. The spontaneous-emission noise is still of Bose-Einstein nature,
since the amplifying layers produce Bose-Einstein distributed ASE and we
have proven that an absorber preserves a Bose-Einstein distribution. If the
optical bandwidth is wider than the inverse observation time, the noise has
a degenerate Bose-Einstein distribution.

Hence, the analysis of the bit-error rate in the detection of zeros does not
change in essence; only the noise levels have to be reevaluated. Of interest
is what happens to the interference term, which we determined for the fully
inverted medium. More generally, is it possible to derive the full probability
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distribution of photons for this case? The answer is yes, and in fact the
analysis is quite simple if we approach the problem with a little ingenuity.

We have shown in Chap. 6 that the equations for an amplifier with in-
complete inversion are (6.137).

B=-V_GA+Nu+N,i (9.52)

with the commutation relations

[&,M] = X(1 - G) and [Nti NQ) = (X - 1) (G - 1) . (9.53)

The system contains two noise sources, one representing the gain of the
upper level, the other the loss caused by absorption by the lower level. The
very same equations can be obtained from a system consisting of an absorber
of loss L, with the equation

B= GoA+NL,

where

[NL, NL+) = - , C . )

followed by a gain system of gain Go, obeying the equations

i3 = GoA + NG ,

where the noise source has the commutation relation

[1VG,1V0 (1 - Go)

(9.54)

(9.55)

(9.56)

(9.57)

The combined system has a net gain G = £0Go and obeys the equation

B = -V_GA + Na + NQ with Nti, = ft and 9e = GoNL . (9.58)

For any value of the inversion parameter X and gain G, we may choose a
cascade of a loss section and a completely inverted gain section that repro-
duces the noise source commutators, by choosing

Go = X(G - 1) + 1 and Go = G (9.59)X(G-1)+1

But this means that we may use the previously derived results for the proba-
bility generating function to arrive at the probability generating function for
this general case. We note, first of all, that an attenuator section preceding the
amplifier still feeds no more than zero-point fluctuations into the amplifier, if
the system is unexcited, and Poisson-distributed photons, if it is excited by
a Poisson process of average photon number (na). The average photon num-
ber fed into the amplifier is C,(na). Thus, borrowing the probability density
generating function (9.46), we find for this case
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1
9

SGo(na)P() = LGo - (G0 - 1)J
exp I G. - (Ga - 1) - Go(na)J

1
9

x exp G(na)
1)]

(9.60)

G

X(G - 1) +
1(na)

From the probability generating function, we may evaluate the first and
higher-order moments of the output photon number:

(nb) = d g(Go - 1) +G0G0(na) = gX(G - 1) +G(na) .

(9.61)

This is an expected result. The ASE photon number is enhanced by the factor
X, and the input photons are amplified by the factor G. The mean square
photon number fluctuations may be evaluated directly from (9.49) by proper
identification of parameters:

(zAn2) = GoGo(na) +2GOGo(Go - 1)(na) +gGo(Go - 1)
(9.62)

= G(na) + 2XG(G - 1)(na) + gX(G - 1)[X(G - 1) + 1] .

Note that the mean square fluctuations have the expected form. First of
all, the last term corresponds to the degenerate Bose-Einstein mean square
fluctuations

(Qn2)B-E = g(n)(1 + (n)) , (9.63)

with (n) = X(G - 1). Further, the interference term does not contain the
degeneracy factor, since interference with the signal occurs only within the
signal bandwidth. The interference term is enhanced by the noise enhance-
ment factor X. The first term represents the amplified fluctuations of the
input Poisson process.

The probability distribution for the incompletely inverted medium can be
obtained from (9.51) using the same simple substitution method. We know
that a cascade of a lossy section with a gain section reproduces completely the
governing equations. The output of this structure is produced by a Poissonian
input into the gain section with the average photon number Go(n0). The gain
section with a perfectly inverted medium produces a spontaneous emission
of average photon number g(G0 - 1). Thus, we may reuse (9.51) and express
the result in terms of the actual gain G and the noise enhancement factor X:
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n

pP,aeg(n) = Go+s) exp(-Go(na))Ln-1 (G(nat

- G - 1 n exp - G(n) a

[x(G - 1) + 11n+s x(G - 1) + 1) (9.64)

G(na,)
x Ln-1

x(G - 1)[x(G - 1) + 11)

The derivations thus far are rigorously quantum mechanical. If the signal
and noise involve many photons, we expect that the results should approach
a classical limit. We now derive the classical limit for the noise and signal in-
tensities. We introduce the classical complex amplitude and the fluctuations
around the amplitude 6A. In order to define the problem, we have to assign
a probability distribution to 5A. This is done on the basis of what we have
learned from the quantum analysis. We have shown that the photon distribu-
tion of amplified spontaneous emission is a Bose-Einstein distribution. The
field of amplified spontaneous emission is Gaussian-distributed. Thus, ampli-
fied spontaneous emission is represented by a JA that is Gaussian-distributed.
In order to compare the classical results with the quantum analysis, we still
adhere to the normalization in which IAQI2 represents the photon number.
This means, of course, that IAQI is a very large number. The detector cur-
rent is equal to the absolute square of the complex amplitude. The detector
current is

IAa + 6AI2 = IAQI2 + Aa6A* + A*6A + 16A12
. (9.65)

It is convenient to fix the phase of the signal so that Ao is real. Then (9.65)
becomes

IA, + 5AI2 = IAo12 + 2A0Re(SA) + ISA12

The expectation value is

(IA. + 8AI2) = (IA.12) + (I6AI2) .

Comparison with the quantum result gives

(IA.12) = G(na) and (16A12) = G - 1 ,

(9.66)

(9.67)

(9.68)

with (Re(8A)2) =
a

(G - 1). If the signal and noise are statistically indepen-
dent, the mean square power fluctuations are

(IA. + 5AI4) - (IA. + 6AI2)2
(9.69)

_ (IA41) - (IA21)2 + 4(IA21)(IRe(aA)2I) + (I5A14) - (I5A12)2
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Now, (I5AJ2) = (Re(dA)2) + (Im(JA)2) = G - 1, and the real and imagi-
nary parts of the fluctuations have equal magnitude. If we ignore the signal
fluctuations and fourth-order terms we obtain

mean square power fluctuations = 2G(G - 1)(na) . (9.70)

This is the interference term in (9.44) obtained from the full quantum analy-
sis. Incidentally, the classical analysis also explains the designation "interfer-
ence term", since this term arose as the product of the signal and noise. Note
that the interference term appears as a beat between the signal and the noise
in phase with the signal and lying within the signal bandwidth. This is the
reason why the quantum analysis found that the interference term does not
change with the degeneracy factor g. A warning is in order, however. If we
carried the quasiclassical argument to its logical conclusion, we would repre-
sent the photon statistics of the interference term by a Gaussian distribution.
This is not a good approximation, as the comparison in Fig. 9.4 shows.

n ---o-

2500 5000 7500 10000 12500 15000

Fig. 9.4. Comparison of degenerate Bose-Einstein distribution for G - 1 = 99,
(na) = 160, and x = 2 with a Gaussian distribution that has the same location of
the peak and the same mean square deviation

9.5 Bit-Error Rate with Optical Preamplification

9.5.1 Narrow-Band Filter, Polarized Signal, and Noise

We shall assume a receiver that has an optical preamplifier, a polarizer, and
a filter, followed by a detector. We make the assumption that the gain of the
amplifier is large and that the photon number of the incoming signal is large,
(na,) >> 1. We assume that the filter bandwidth is adjusted to be equal to the
signal bandwidth Bs. Since the observation time 7 is equal to the duration of



9.5 Bit-Error Rate with Optical Preamplification 325

a pulse, the product of the bandwidth and observation time is unity, B8rr = 1,
and thus the spontaneous emission is nondegenerate, i.e. fully represented by
a simple Bose-Einstein distribution. One must note that the assumption of
a nondegenerate Bose-Einstein distribution also assumes that the signal and
noise are of a single polarization.

The time slots occupied by zeros contain Bose-Einstein-distributed pho-
tons. The time slots occupied by the signal have fluctuations given by (9.44).
In the case of large gain (G >> 1) and large input photon number ((na) >> 1),
the second term in (9.44) dominates. This interference term has been shown
to be the result of the beating of the signal with the noise. The interference
term has the mean square deviation

(,An2) - 2G(G - 1)(na) 2G2(na) . (9.71)

First, consider the bit errors in an empty time interval in which only the
ASE contributes photons. The probability distribution of the ASE follows a
Bose-Einstein distribution of average photon number G - 1:

1 (n) _1
(9.72)p(m)

= T+ (n) (1 + (n)) G

(G-1
G ) .

Suppose that the threshold is set at a photon number nthreshold = 9G(na),
normalized to the amplified input photon number (na). The threshold param-
eter 19 is 0 when the threshold is set to accept all counts greater than 0, and
1 when the threshold is set at the average level of the output signal. The
probability of the error of interpreting a zero as a one is

00 (n)
G - 1

i9G(n)

pB-E(1) = p(n) _ (1 +
(n))19G(fl)

_ (
G

) (9.73)
t9G(n.)

In the limit of large G, this expression approaches

c APB-E(1) = exp(-'A(na)) (9.74)

Next, consider the probability of error when a pulse is received. We assume
at first that the probability of the output in the presence of an input signal
can be approximated by a Gaussian with the mean square fluctuations (9.71).
Thus we assume the probability distribution of photons in the presence of a
signal to be

P(n) exp
- (n - G(na))2

(9.75)

47fG2(na) ( 4G2 (na) )
If the threshold is set at nthreshold, the probability of interpreting a one as a
zero is
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2

a.) 21 - 19)
psignal(0) _ erfC (

( n

/ (9.76)

where

2 r°° 2

erfc(x) - J e-Xdx
. (9.77)

By proper choice of the threshold 'i9 we equate the two error probabilities,
Psignal (0) = P13-E(1), as an optimum detection strategy, if the average rates of
transmission of zeros and ones are the same. Figure 9.5 shows the probabilities
of error as functions of the threshold. For an input photon number of 110,
we find an error probability of 10-9 and a value of 19 = 0.188. The number
of photons required for the reception of one bit at a bit-error rate of 10-9 is
55 photons, since, on the average, the "ones" occur only half of the time.

r
C

a

2
a

0.2 0.4 0.6 0.8 1.0

Fig. 9.5. Probability of received photons and probability of error as function of
threshold; X = 2, (na) = 290
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Fig. 9.6. Construction for determination of photon number for a bit-error proba-
bility of 10-9. The crossover of the integrals of the probability functions. G = 100

We have mentioned that a Gaussian approximation for the photon distri-
bution of a "one" is not a good approximation. If we use the exact probability
distribution (9.51) with g = 1 we find for the average photon number the value
of 40 photons (Fig. 9.6). This is also the value found by Li and Teich [75].

If the amplifier is not perfectly inverted, and instead possesses a noise
enhancement factor X = 2, as is the case for an erbium-doped fiber amplifier
pumped at 980 nm wavelength, then the previous theories, both the exact
theory and the theory based on a Gaussian assumption, simply multiply the
average photon number by the noise enhancement factor. In this way we
obtain 110 and 80 photons, respectively, as the required photon number for
a bit-error rate of 10-9.

9.5.2 Broadband Filter, Unpolarized Signal

Thus far we have assumed that the detector was preceded by an optical filter
with a bandwidth that was equal to the optical bandwidth of the signal.
Here we consider the more practical case when an optical filter of bandwidth
larger than the signal bandwidth is used. The interference noise of the signal
does not change, since the signal beats only with noise that lies within the
signal bandwidth. The noise in the zero slot increases by a factor of 2, since it
involves two polarizations, and increases further with increasing bandwidth
Bf by the total degeneracy factor g = 2Bf/Bs.

We shall start with the standard approach that uses the so-called Q factor.
This approach is based on the assumption that the noise has a Gaussian
distribution for both the "zero" and the "one". In the nondegenerate case it
was clear that the distribution of photons in the zero slot was exponential,
not Gaussian. Thus we could not use this approach at all. In the case of high
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Fig. 9.7. A typical eye diagram of detector voltage with optical preamplification

degeneracy, the distribution in the zero slot is a degenerate Bose-Einstein
distribution which starts to resemble a Gaussian. In the slot occupied by a
one, the distribution is not Gaussian either, as pointed out earlier, but order-
of-magnitude predictions based on such an assumption ought not to be too
far from the truth. The widely used Q factor describes the "eye opening" of
a so-called "eye diagram". Such eye diagrams are produced by overlapping
on an oscilloscope the received detector voltage waveforms for a succession
of zeros and ones, as shown in Fig. 9.7. We assume that the distributions are
Gaussian, both for the interference noise and for the degenerate spontaneous-
emission noise. The two probability distributions are

_ z

PO (n) =
27rvo

exp (n 2Qoo))

) , (9.78a)

2
1

p1(n) =
Zeal

exp
C-

(n 2(2i))
/

(9.78b)

where we treat the photon number as a continuous variable. We assume a
signal with equal probabilities of zeros and ones. If the threshold is set at NO
and the probabilities of errors are set equal, we have

1 dnexp (n - (no))2
Jvo,

o

2u0
(9.79)

fNo - (n - (nl))21

J do exp 22Ql

The above relation gives the threshold setting as

N,9 - (no) - (ni) - N,9 = (ni) - (no) = Q (9.80)
Qo Ul 0'. + al

This equation is also the definition of the Q factor. For equal probabilities of
zeros and ones, the bit-error rate can be expressed as
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N,y r°°
BER = 1

J
do pl (n) + 1 J

do p2 (n)
2 w 2 N,9

(9.81)

= 2; f
00

dx exp (-) = 2erfc W

BER of 10-9 requires a Q of 6. We approximate thedegenerate spontaneous-A
emission noise as Gaussian, with the mean square value (,An') = g(nsp)(1 +
(n,) ), where g = Bf /B,. We allow for imperfect inversion of a laser, for
which (n,p) = X(G - 1), where X is the inversion factor. The mean square
deviation of the zero level is (see 9.62)

Qo = &,,p)(1 + (nsp)) = gx(G - 1)[X(G - 1) + 11 (9.82)

where g is the degeneracy factor. The mean square deviation of the "one"
level contains the interference term. In the nondegenerate case we neglected
the contribution of the ASE, which is legitimate when g = 1. However, for
large values of g, this noise cannot be neglected. We thus have

vi = 2XG(G - 1)(na) + gX(G - 1)[X(G - 1) + 1] . (9.83)

The Q factor in the limit of very large gain is thus

Q = (ni) - (no) _ (na)
(9.84)

ai + Qo 2X(na) + gX2 + gX2

The number of input photons required for a BER of 10-9 calls for Q = 6.
We obtain for the required average signal photon number

(na)/2 = 36 + 6vfg-. (9.85)

A plot of the photon number as a function of the degeneracy for a bit-error
rate of 10-9, for X = 1, appears in Fig. 9.8. The remarkable fact is that
this simple expression gives 42 photons for g = 1, very close to the exact
value of 40. This is in spite of the fact that even the exponential probability
distribution of the zero was approximated by a Gaussian. The noise of the
zero is underestimated by the approximate analysis, and the noise of the
one is overestimated, so that the approximate value for the average photon
number is not far from the exact value. For X > 1, the average photon number
is simply multiplied by X.

A practical receiver has to receive an unpolarized signal since the polar-
ization of the signal cannot be controlled in propagation along a fiber. (Space
communication between satellites does not have this difficulty.) This intro-
duces automatically a degeneracy factor of 2. The optical filter bandwidth
must, generally, be quite a bit wider than the signal bandwidth to avoid sig-
nal distortion on one hand and reduce the effects of environmentally induced
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Fig. 9.8. Photon number computed from Q factor for X = 1

shifts of the filter center frequency on the other hand. A filter bandwidth of
1.0 nm, corresponding to 133 GHz at 1.5 pm wavelength, is quoted in [75], for
a bit rate of 10 Gb/s. This gives a degeneracy factor of 2 x 13 = 26. From Fig.
4.3 we read off 67 photons. With an an incompletely inverted gain medium
with a x factor of 2, we find 134 photons. In [77] the measured power was
-38 dBm. This corresponds to

0.16µW 0.16 x 10-6
=121

hvx1010 6.626x10-34x2x1014x1010
(9.86)

which is quite close to the theoretical value. Reference [78] quotes 137 photons
per bit, [79] 155 photons per bit. The lowest number has been quoted in [80],
which reported 78 photons per bit. The degeneracy factor in this case, with a
filter bandwidth of 70 GHz and a single polarization, was 7. Theory predicts
102 photons for X = 2. The inversion factor in this experiment may have
been close to unity.

Theoretical results also appear in the literature that predict lower photon
numbers for a 10-9 bit-error rate [81]. These are based on the assumption
of shot noise (Poisson-distributed carriers) for the detected ASE noise. This
assumption underestimates the actual level of detector noise. An exact com-
putation that takes into account the actual probability distribution of the
"zero" and "one"levels as predicted from (3.32) is shown in Fig. 9.9.

9.6 Negentropy and Information

Thus far we have studied the number of photons required for the reception
of one bit of information via digital transmission of a pulse (a "one") and
a blank (a "zero") at a bit-error rate of 10-9. With a negligible sacrifice
of additional bits, the transmission can be made error-free. Thus we may
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Degeneracy Factor g

Fig. 9.9. Photon number computed from exact analysis and with Gaussian as-
sumption [80,861 (computation by W. Wong)

compare the number of photons required to transmit one bit of information
with the Shannon formula that predicts the minimum number of photons
required for error-free transmission. We follow a derivation first published by
J. P. Gordon [82].

The maximum amount of information that can be carried by n photons
follows from the negentropy principle of Shannon [83, 84]. The entropy nor-
malized to k (Boltzmann's constant) for a system containing on the average
(n) photons is

k m H = - > p(n) ln[p(n)] ,k n
(9.87)

with the probability distribution p(n) so chosen that H is maximized under
the constraints

E P(n)

n

and

(9.88)

E np(n) = (n) . (9.89)
n

When the maximization is carried out, we find that the probability distribu-
tion is Bose-Einstein (compare Sect. 4.8):

p(n) =
1(

)

(

(n) / n
(9.90)1+ n 1+(n)

This result is not surprising, since the Bose-Einstein distribution is the ther-
mal distribution, the maximally random distribution.



332 9. Photon Probability Distributions

The maximized value of H is

Hmax = (n) InI 1 + (1) + ln(1 + (n)) . (9.91)

The negentropy principle states that the amount of information that can be
transmitted with proper encoding in an error-free manner is equal to Hm'..
It is implied that the sender of the information utilizes an encoding in which
the probability of transmission is chosen so as to be maximally random, and
hence the sender must choose the Bose-Einstein distribution.

If communication takes place in the presence of noise, the entire infor-
mation content (9.91) cannot be transmitted. According to the negentropy
principle of information [83], the maximum amount of information that can
be extracted in an error-free manner from signal states in a noise background
is equal to the difference of the total entropy (9.91) and the entropy of the
noise. The entropy of a thermal background at temperature 9 is

Ho = (no) In I 1 + ne)) + ln(1 + (no)) . (9.92)

The information content I of the message is thus

I = Hmax - Ho = (n) In (1+-(n))I + ln(1 + (n))

(9.93)

-(no)Inl 1 + e)) -ln(1+(no)).

It should be emphasized that (9.93) is written in terms of the photons
received by an ideal receiver that can distinguish photons. If there is attenu-
ation between transmitter and receiver, (n) is the average number of received
photons. It is customary to express the quantity of information in terms of
the logarithm to base 2, rather than the natural logarithm. The information
I = - >,n p(n) loge p(n) transmitted by zeros and ones with a probability
1/2 each is then unity, i.e. one bit.

For a given average photon number, the negentropy principle predicts the
amount of information that can be sent per photon, or per binary symbol,
without error in a noise background. We have found that for a completely
inverted gain medium, 40 photons on average provide a BER of 10-9. If
the medium is not completely inverted, e.g., X = 2, then about 80 photons
on average are required. This gives a noise background of (no) = 2. It is
of interest to ask how much information could be transmitted with photons
in a noise background of (no) = 2, the equivalent noise background of an
erbium-doped preamplifier. In the limit of large average photon number, the
information is
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1 + (na)

I
1092

(1 + 1/(no)
),no,

(1 + (no))
(9.94)

This formula predicts 2.11 bits for an average photon number (na) = 80
photons, as opposed to the previously predicted 1 bit at an error rate of 10-9.
Since it is easy to correct for such a low bit-error rate with an economical
code, the comparison is a fair one. It is interesting to note that only a factor
of 2.11 is sacrificed by not using a more sophisticated encoding scheme.

9.7 The Noise Figure of Optical Amplifiers

In this chapter, we derived the mean square fluctuations of the charge of a
detector illuminated by optical radiation. This very expression is used in a
widely accepted measure of the noise performance of optical amplifiers [81].
A signal-to-noise ratio is constructed at the input and at the output of the
amplifier, and a noise figure is defined in terms of the ratio of signal-to-noise
ratios:

F _ input signal-to-noise ratio (9.95)
output signal-to-noise ratio

The signal-to-noise ratio is constructed from the square of the average signal
photon number, divided by the mean square photon number fluctuations.
In this section we explore the consequences of this definition of noise figure
and show that it leads to a noise figure that is a function of the signal level.
Finding this property to be unacceptable, we proceed to define an excess
noise figure and noise measure in a way consistent with their use in Chap. 7.

First we present a brief review of the definition of noise figure as stan-
dardized by the IRE and accepted by the IEEE [17] for the characterization
of electronic amplifiers. The original formulation defined it in concordance
with (9.95), using as a measure of the signal-to-noise ratio the signal power
divided by the noise power (in photonic terms, the measure of the signal is
the average photon number, not its square, and the mean square amplitude
fluctuations are the measure of the noise). This fact is of great importance.
Indeed, in a linear amplifier, the amplifier noise is additive to the signal and
the signal drops out from the definition (9.95):

F= noise power at output
(9.96)

G(noise power at input)

The noise powers are defined as "available noise powers". In the rare case
when the real part of any one of the impedances is negative, exchangeable
power is used, as already pointed out in Chap. 5 and [17]. G is the available (or
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exchangeable) gain. For convenience, the input noise power is standardized
to be the thermal noise at room temperature. (We shall concentrate here
especially on the spot noise figure, namely the noise figure within a signal
bandwidth Bs sufficiently narrow that the properties of the amplifier are
frequency-independent within this bandwidth.) The available noise power at
the input is k00Bs, where k is Boltzmann's constant and 00 is the standard
"room" temperature of 290 K. Using this fact, (9.95) can be rewritten

F _ GkOOBS + noise power at output added by amplifier
GkOOB8

= 1 +
noise power at output added by amplifier

Gk00Bs

(9.97)

This definition of noise figure is independent of the signal. Standard noise
measurement equipment takes advantage of this fact: it measures the output
noise power within a bandwidth Bs with no signal applied to the input, the
input being terminated in the source impedance at temperature 00. Another
convenient definition is the excess noise figure F - 1:

F - 1 - noise power at output added by amplifier
(9-98)

Gk00Bs

The excess noise figure (as well as the noise figure) gives full information on
the noise power added by the amplifier. Since the amplitude fluctuations of
the amplifier noise are (usually) Gaussian, and Gaussian distributions are
fully described by the second moment (i.e. power), the noise figure gives the
statistics of the amplifier noise.

If the gain of an amplifier is small, cascading with another amplifier may
be necessary. Denoting the noise figure of the first amplifier by Fl and the
noise figure of the second amplifier by F2, the noise figure F of the cascade
is [17]

F2-1F=F1+
G1

(9.99)

These definitions have served the engineering community well in all appli-
cations within the "low-frequency" regime, from d.c. to millimeter waves.
Electronic preamplifiers that process low signals do not experience satura-
tion. The (unsaturated) gain and the noise figure are reliable attributes of
low-noise amplifiers.

The question then arises of how the definition of noise figure should be
generalized into the domain of optical laser amplifiers. Laser amplifiers exhibit
some features not shared with electronic amplifiers. Current practice [811 is
to use the signal-to-noise ratio definition (9.95) of the noise figure and to
define the noise at the input as the mean square photon number fluctuations
of a Poissonian process of average photon number (n0,). The reason for using
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a Poissonian distribution is based on the fact that a highly attenuated signal
will, in general, acquire Poisson statistics. This definition is

z
input signal-to-noise ratio = (an) = (na,) . (9.100)

Since the square of the photon number is used as the definition of the signal,
the signal at the output is defined as G2(na)2. The noise at the output is
given by the mean square fluctuations (. nb) of the photon number at the
output as given by (9.62):

(Anb2) = G(na) + 2XG(G - 1)(na) + gX(G - 1) [X(G - 1) + 1] . (9.101)

Thus, the signal-to-noise ratio at the output is

output signal-to-noise ratio

G2 (na)2
(9.102)

G(na) + 2XG(G - 1)(na) + gX(G - 1)[X(G - 1) + 1)]

The noise figure defined on the basis of photon number fluctuations, Fpn f,
becomes

G + 2X(1 - 1/G) + gX LX (1 - G)
+ \G/ J \1 G/ (a)11

(9.103)

One feature is immediately apparent: the noise figure is not signal-indepen-
dent. This is in contradistinction to the conventional definition of noise figure
for a linear amplifier, which is signal-independent. In common applications
one can usually make the approximation that the signal photon number is
large enough that the last term in (9.103) can be neglected. It is in this
form that the usage has been established and the noise figure becomes signal
independent:

Fp,,f =

G

+ 2X(1 - 1/G) . (9.104)

However, this definition has problems. The signal photon number is not
always that large. An ideal, fully inverted preamplifier requires of the order
of 40 photons per bit for a bit-error rate of 10-9. One may envisage situations
in which a higher bit-error rate is permitted. Then the signal photon number
can become smaller. One may also face the common situation in which the
filter following the optical preamplifier has a bandwidth B f much wider than
the signal bandwidth. This is usually the case in practice, since the prob-
lem of control of the filter center frequency is alleviated by the choice of a
wide bandwidth. Further, this definition does not obey the cascading formula
(9.99).
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The definition (9.103) does not obey the cascading formula, because it
uses as the measure of signal-to-noise ratio a ratio of squares of powers (or
energies, or photon numbers). An optical amplifier is not a linear amplifier of
photon number. Even though the output photon number is G times the input
photon number, the noise is not additive. However, the optical laser amplifier
is a linear amplifier of the electric and magnetic field of the incident wave, not
unlike a microwave traveling-wave tube amplifier. With two optical amplifiers
in cascade, the second amplifier amplifies the noise power of the first one and
adds its own noise. In defining a noise figure of an optical amplifier in the spirit
of the IEEE definitions, one can start with a signal-to-noise ratio identified
as the ratio of the time-averaged square of the signal amplitude to the mean
square fluctuations of the signal amplitude.

In the nondegenerate case, when the signal bandwidth is equal to the
noise bandwidth, the amplifier is described by (6.128)

B=-,/GA+It +Ne. (9.105)

If the amplifier is excited by a coherent state, the mean square amplitude of
the in-phase component of the signal at the input is obtained from

(al 1(A + At)la)2 = 1(a2 + a*2 + 21x12) . (9.106)

The first two terms give the time-dependent part of the sinusoidally time-
varying signal and have zero average. The quadrature component gives the
same average. Thus the signal averaged over time is

input signal = 1612 = (n3) . (9.107)

The signal at the output is computed from

(x12 (B + Bt) 1a)2 = G1(a2 + a*2 + 21x12) (9.108)

and from the amplified quadrature component. Thus

output signal = G1a12 = G(n3) . (9.109)

The noise at the input is due to zero-point fluctuations in the in-phase and
quadrature components, which add up to 1/2. The noise at the output is
composed of the amplified zero-point fluctuations accompanying the signal,
1/2G, and the noise due to the two noise sources, giving for the in-phase
component
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((B + Bt)2) - 4 (B + Bt)2

= 4 ((N. + 4 ((NQ + Ne )2)

337

(9.110)

= 4X(G - 1) + 4(X - 1)(G - 1)

= 1(2X-1)(G-1)

and the same amount of fluctuations in the quadrature component. Thus the
noise figure defined as the ratio of signal-to-noise in terms of squared field
amplitudes, Ffas, is

Ffas=1+(2X-1)(1-1/G). (9.111)

This noise figure is signal independent, as it should be. However, it is not
directly measurable. The input signal-to-noise ratio can only be inferred from
measurements of the amplifier output.

A viable definition of excess noise figure, one that is directly measurable,
is suggested by (9.98). In the classical domain, the excess noise figure gives the
amplifier noise power divided by the gain, normalized to thermal noise. The
normalization to thermal noise does not make sense for an optical amplifier,
since the fluctuations accompanying the signal are zero-point fluctuations
that are much larger than thermal noise. Normalization to hw0B9 is suggested
by the definition (9.111). A measurement of ASE power gives full information
about the photon statistics of the amplifier noise, since they have a Bose-
Einstein distribution within the time 1/B3. Thus, we may define the excess
noise figure for an optical amplifier in terms of the noise power added by the
amplifier in one single polarization (the polarization of the signal)

FASE - 1 GhwB8
(9.112)

X(G-1)
G

=X(1-1/G).

With a filter of bandwidth BS following the amplifier, the optical power mea-
sured is GTawOBS(FASE -1). Thus, with the definition (9.112), we deal with
a quantity that is

(a) measurable,
(b) gives full information on the noise statistics that can be used to evaluate

system performance, and
(c) obeys the cascading formula.
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If no polarizer is used and the bandwidth of the filter is larger than the
signal bandwidth, then a measurement of the amplified spontaneous emission
still gives full information. We need to note only that the ASE photon statis-
tics are now degenerate Bose-Einstein statistics with a degeneracy factor of
g = 2B1 /Bs. The knowledge of this photon flow, along with the gain G and
degeneracy factor g, is all the information needed to characterize the noise
and to predict bit-error rates of detected signals. For example, the output
photon fluctuations (9.101) can be determined from this knowledge for any
input signal photon number (no,). If the preamplifier is followed by a pho-
todetector of known quantum efficiency and noise of its own, the bit-error
rate of the system can be predicted.

If the bit rate of the signal is much higher than the relaxation rate of
the gain medium, the amplifier may saturate even for low-level signals. This
is a distinct advantage of the erbium fiber amplifier since it prevents inter-
symbol interference and provides gain stabilization in long-distance amplifier
cascades. With the gain fixed, the amplified spontaneous emission is thus
fixed. Thus, in the case of fiber amplifiers it may be necessary to saturate the
amplifier to the nominal gain level to arrive at the proper value of the ASE.
This can be done by a chopped signal and a measurement of the noise in the
time intervals containing no signal.

The proper definition of noise figure for an optical-fiber amplifier can
be used to advantage in the choice of pumping schemes for optimum noise
performance. The amplifier can be pumped by injection of the pump radiation
from either of the two ends, or from both ends. One may also consider the use
of more injection points along the amplifier. The purpose is to minimize the
noise measure of each segment and, if possible, excite the segments in such a
way that the segments of lowest noise measure occur in the front end of the
amplifier. The noise measure of a short segment of length Liz of an optical
fiber amplifier is (FASE - 1)/(1 - 1/G) = X. The pumping controls the gain
and the noise enhancement factor. The aim is thus to minimize the inversion
parameter and place the segments with the lowest noise enhancement factor
as close to the input as possible.

There is another consideration that favors the definitions of noise figure
FASE and Ffas, i.e. the need to connect the definitions of noise figure for linear
microwave amplifiers with those for optical amplifiers. In particular, in the
far-infrared regime, both quantum effects and classical thermal noise sources
contribute to the noise performance. In this frequency regime one needs a
definition that covers both quantum-noise and thermal-noise effects.

The noise figure Ffas was derived under the assumption that the noise at
the input was quantum noise with no thermal contributions. Equation (7.75)
gives the mean square in-phase fluctuations when thermal noise of average
photon number (no) contributes to the fluctuations:

1Q2=4+(2).
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The quadrature fluctuations are of equal magnitude. Thus, the noise at the
input is, instead of 1/2, equal to 1/2 + (no). The background of thermal
photons is taken to be that of a standard (room) temperature. We find for
the generalized noise figure Ffas

Ffas
- 1 1/2 +1(no) \1 G/ (9.113)

It is easy to show that this definition approaches the proper classical limit.
A classical amplifier adds noise in amounts much larger than those dictated
by the penalty for a simultaneous measurement of in-phase and quadrature
field components, i.e. a photon number much larger than G - 1. Thus, one
may describe the operation of a classical amplifier by quantum amplification
with a very large X, i.e. X >> 1. Then

lim (Ffas - 1) =
X(G - 1)

x»1 G ((no) + 1/2)

Multiplication of the top and bottom by hw0B changes photon numbers into
rates of energy, or power flow. Further, in the classical imit, (no) >> 1/2, and

available noise power added by amplifierlim (Ff - 1) =
class GkBoB

which is in agreement with (5.85). A similar modification is possible for FASE.
We include the thermal noise by writing

FASE - 1 =
X(G-1)

G((no) + 1)

Again, this noise figure approaches the proper classical limit and in doing so
merges with the definition Ffas - 1 in the classical limit.

9.8 Summary

The conservation of commutator brackets in attenuation and amplification
calls for the introduction of noise sources into the scattering formalism. If we
assume that the reservoirs of the noise sources are in their ground state, we
find the minimum noise that is added in amplification or attenuation. The
commutators of the noise sources also permit the evaluation of the complete
photon statistics of the output photons for a given probability distribution of
photons at the input. Attenuation leads to a binomial process: photons are
Passed with probability G and lost with probability 1 - G, where G is the
loss factor. Both Poisson and Bose-Einstein distributions are preserved in
attenuation. Since the Bose-Einstein distribution is the thermal distribution
one may interpret attenuation as a form of cooling. Amplification with no
input produces a Bose-Einstein distribution of output photons. The noise
source does not contribute to the falling factorial moments of the photon
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number at the output of an attenuator. Similarly, there is no contribution
of the noise source to the rising factorial moments of a perfectly inverted
amplifier. This finding underscores the fact that the discretization of energy
via the photon concept can fully account for quantum effects without the
need to invoke zero-point fluctuations.

We were able to generalize the analysis to cover the case of an amplifier
with incomplete inversion. The problem can be reduced to a cascade of an
attenuator and an amplifier with complete inversion. Since the attenuator
preserves a Poisson distribution, the presence of the attenuator is easily taken
into account.

The formalism found practical application in the evaluation of the mini-
mum number of photons per pulse required for a bit-error rate of 10-9 using a
detector with an optical preamplifier. The ideal case is when the signal is po-
larized, a filter is used with a bandwidth equal to the signal bandwidth, and
the amplifier is perfectly inverted. We found that 40 photons are required.
When the signal is not polarized, the degeneracy is equal to 2, and when
the optical amplifier has a bandwidth wider than the signal, the degeneracy
increases further.

One would expect that, in the limit of large signal photon number, the bit-
error rate of an optical preamplifier followed by a detector could be predicted
by a classical analysis. This is indeed the case. The analysis in [85] gives
results that are numerically in good agreement with the quantum analysis.

We looked into the prediction of the Shannon theory for the bit-rate
increase if an ideal code were used to overcome the noise and found that an
increase of only a factor of 2.11 would be achievable. Finally, we addressed
the problem of the definition of the noise figure. Even though we had used
the concept and definition of noise figure in Chap. 7 to derive the optimum
noise performance of an amplifier, the discussion of the current usage had
to wait until we discussed photon number fluctuations. The current use of
"noise figure" defines the signal in terms of photon flow squared, rather than
field amplitude squared. This definition is designed to determine the signal-
to-noise ratio at the detector output. It is not suited to answer the simple
question of how to cascade two amplifiers, given their gain and noise figure.
In order to answer such questions we need to revert to a generalization of the
concept of noise measure as employed in Chap. 7.

Problems

9.1* Show that the characteristic functions of a Bose-Einstein and a Poisson
process become approximately equal for a small average photon number,
(n) << 1.

9.2 Show that the characteristic function of the photon number of a Poisson
distribution approaches the characteristic function of a Gaussian distribution
in the limit of large average photon number.



Problems 341

9.3 Show that the probability of a Bose-Einstein distribution approaches
that of the energy of a Gaussian distribution in the limit of large average
photon number.

9.4* A group velocity dispersion compensator consists of an optical pream-
plifier of gain G1 and noise enhancement factor X1, followed by a circulator
and grating reflector of net loss G2, and a postamplifier of gain G3 and noise
enhancement factor X3 (see Fig. P9.4.1). Determine the noise figures FASE
and Ffas of the system.

loss Lr -------------- i
Gt grating

reflection I

illllllllll

Fig. P9.4.1. Group velocity dispersion compensation

9.5 Consider the circuit of Fig. P9.5.1. It represents a receiving detector in
which the current source provides the detector current.

(a) Determine the filter function H(w). Remember that H(w) represents the
frequency dependence of the charge Qd when the charge Q,g is supplied
by the detection process. A circuit with an instantaneous response has a
frequency-independent H(w), a delta function in the time domain. Thus
H(w) = Qd(w)/Qs(w)

(b) A non-return-to-zero (NRZ) bit pattern at an optical carrier frequency W.
is incident on a detector. If the pattern is random, i.e. the zeros (blanks)
and the ones (rectangles of height A and width To) occur randomly, find
the spectrum of the detector current.

Fig. P9.5.1. Schematic of receiving detector
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9.6 In the text we considered generating functions for one, single discrete
random process. You are asked to generalize the formalism to a pair of discrete
random processes, such as the photon counts of two detectors.

Define the falling-factorial generating function by

_ i

"4

p(m, n)m(m - 1) .. .71) ';P

m,P n,q

x...(m-p+1)n(n-1)...(n-q+1).
(a) Derive a relation between the probability generating function

p(e, rl) =
mgnp(m,

n)
m,n

and the falling-factorial-moment generating function.
(b) Derive the relation between the probability generating function and the

rising-factorial-moment generating function

EE P 779
p(m, n) (m + 1) (m + 2)

+n,P n,q p!q!

...(m + p)(n + 1)(n + 2)...(n + q) .

9.7* Show that optical preamplification of high gain G and large signal pho-
ton number followed by detection gives higher signal-to-noise ratios than
direct detection followed by a microwave amplifier with a noise figure of 3
dB. Assume a bandwidth of 10 GHz and a signal photon number (n8) = 100.

9.8 Relate the falling-factorial-moment generating function to the rising-
factorial moment generating function.

9.9 Determine the signal photon number (ns) of a "one" required to achieve
a Q factor of 6 in heterodyne detection.

Solutions

9.1 The characteristic function for a Poisson process is

CP(S) = e- (n) E (n)ne,£n =
n!

n

The characteristic function for a Bose-Einstein process is:

CBE() = 1 (n)

n
,£n = 11 + (n) ten (1 + (n)) e 1 - (n) (e'£

For a small expectation value of the photon number we have
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CP(S) = e(T1)[exPO0-1] ; 1 + 1] .

and

CBE( 0 = 1 1 + 1]1 - (n)(eie - 1)
ti

QED .

9.4 We have for the two excess noise figures of an amplifier

FASE-1=X(1-1/G) and Ffas-1=(2X-1)(1-1/G).
The attenuator does not add noise power and thus its excess noise figure
FASE -1 is zero. On the other hand the noise figure of the attenuator defined
on the basis of mean square field fluctuations is

Ffas =
Sti/Nz

= 1/G
So/No

since the zero-point fluctuations are the same at the input and output, i.e.
Ni = No. The cascading formula works for both definitions of noise figure.
We have

/ F2-1 F3-1F-1= Fl-1+
Gl

+F3-1
.

Thus

) + X3(1 - 1 G3)-1 = (1 - 1/CF 1ASE X1

and

G1G2

Ffas-1=(2X1-1)(1-1/G1)+ 1
C

1
l G2

-11

+ (2X3 - 1)(1 - 1/G3)
G1G2

9.7 We determine first the signal-to-noise ratio of a system consisting of an
optical preamplifier of gain G followed by direct detection, case (I). If the
expectation value of the signal photon number entering the amplifier is (ns),
then the signal-to-noise ratio, defined as the ratio of the mean square signal
power to the mean square number fluctuations, is

S G2(ns)2 _ G2(ns)2 _ (ns)
N (zAn2) 2XG(G - 1)(ns) 2X(1 - 1/G) (1)

where we have ignored the contribution of ASE to as applicable to
large (n3). Next consider direct detection followed by microwave amplifica-
tion, case (II). For a photon rate r, the current of the photodetector is

i=4r,
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and the signal power Ps emitted by the photodetector into the input resis-
tance R of the amplifier is

P3 = z2R = g2r2R R.

The noise power referred to the microwave amplifier input within a bandwidth
B, for an amplifier noise figure F, is

P,,=FkBoB.

The signal-to-noise ratio is

S
=

PS
=

q2r2R
=

1
q gBR(ns)2 ,N P,,, FkBoB F kBo

where we have set r/B = (n3). The signal-to-noise ratio is proportional to
(n3)2, contrary to case (I). Bit-error rates of better than 10-10 are achieved in
case (I) with (n3) : 100, for a bandwidth of B = 10 GHz. With an amplifier
input resistance of 50.(2 we find

N F kBogBR(ns)2

=T40x1.6x10-19x1010x50x1002

=1.6x10-2.
This is a very small number, whereas case (I) achieves a signal-to-noise ratio
much greater than unity with (n3) = 100. We see that the performance in the
case of direct detection followed by microwave amplification is handicapped
by the assumption of a 50 .(2 input impedance and the low photon number. If
the input impedance could be set at 5 k.f2, the detection sensitivities in both
cases would be comparable. Also, a higher photon number per bit would help
in case (II). However, if the aim is to operate with as small a photon number
rate as possible, and microwave amplification at the 50 .(2 impedance level is
required, the disadvantage of case (II) is overwhelming.



10. Solitons
and Long-Distance Fiber Communications

An optical fiber made of silica with a germanium core can support pulses,
"solitons", that propagate undistorted if the fiber has negative dispersion at
the carrier frequency of the pulses. The self-phase modulation of the pulse by
the Kerr effect balances the dispersion [4]. Solitons have been proposed for
repeaterless digital communications over transoceanic distances [5]. Instead
of a signal composed of pulses and blanks being detected and regenerated ev-
ery so often, as is done in conventional transoceanic communications, a signal
consisting of solitons and empty time intervals would only be amplified every
25 km or so, without regeneration. This revolutionary proposal has been ex-
plored in extensive laboratory experiments [7,871, but the first repeaterless
transoceanic fiber communication cable, laid in 1995, uses fiber with close
to zero dispersion and functions in what may be called the "linear" regime
(self-phase modulation is not utilized, but since it is not entirely avoided, it is
combatted by proper dispersion management along the fiber). The operation
is called non-return-to-zero, or NRZ for short, as a description of the signal
format: if two pulses are adjacent to each other, the pulse amplitude does not
return to zero; two rectangular pulses merge into one pulse of double length
(see Fig. 10.1). Whereas excellent performance has been achieved with op-
eration in the linear NRZ format, and the bare essentials of the scheme are
easily understood, no analytic theory exists for the description of the subtle
nonlinear effects and dispersion effects that affect this mode of communica-
tions. Much better understanding has been developed for soliton operation,
largely owing to the new mathematical methods developed for the analysis of
a class of integrable nonlinear partial differential equations derivable from a
Hamiltonian [88,89]. In this chapter we shall study only repeaterless soliton
fiber communications, in part since the theory is elegant and well developed
and in part because soliton communications may still find implementation,
but mainly as a preparation for the analysis of the generation of squeezed
radiation using solitons. Further, solitons passing through an amplifier are
an interesting example of nonadditive noise, a case that transcends the linear
additive noise analyses of the preceding chapters.

In Sects. 10.1 and 10.2 we derive the nonlinear Schrodinger equation that
controls soliton propagation and determine the solution for the fundamental
soliton. Section 10.3 studies properties of solitons. Soliton perturbations and
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t
intensity

t -
Fig. 10.1. Non-return-to-zero format: a 110100111 sequence

methods for the analysis of solitons perturbed by noise are treated in Sects.
10.4 and 10.5. Long-distance propagation of solitons is analyzed in fiber sys-
tems in which the loss is compensated by gain and ASE is generated along
the way. The soliton experiences frequency and timing jitter. The frequency
jitter poses a particularly serious threat, since it is transformed into a timing
jitter by propagation along a dispersive fiber. This effect has become known
as the Gordon-Haus effect. Next, we show in Sect. 10.6 how filtering can
reduce the effect, and describe the sliding-guiding-filter concept introduced
by Mollenauer et al. [90], which greatly extends the error-free propagation
distances of solitons. Polarization effects in soliton propagation are consid-
ered after that. Finally, we study the continuum generated by a perturbation
of the soliton.

10.1 The Nonlinear Schrodinger Equation

The propagation equation of a mode on a dispersive fiber was derived in Sect.
3.5. It was obtained by an expansion of the propagation constant to the second
order in frequency deviation dw from a carrier frequency. The differential
equation for the pulse envelope a(z, t) expressed in terms of the time variable
T contains only the second derivative of the propagation constant with respect
to frequency, ,8" (see (3.58)):

a o a2
aza = -i 2 a2a . (10.1)

If the propagation constant ,3 is perturbed by 60 via some other mechanism,
then (10.1) becomes

a o a2
aza -1 2 ate a+ i5,3a . (10.1a)

The Kerr effect produces a perturbation of the propagation constant by
changing the index of the medium in which the wave propagates. The Kerr
effect is defined to be positive when the index increases with increasing in-
tensity. The index of the fiber is written (see (3.72)) as

n=no+n21, (10.2)
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where I is the intensity. A mode of amplitude a, with IaI2 normalized to
power, has a nonuniform intensity profile. Since the phase shift in one wave-
length is exceedingly small (10-7 or smaller), one may use perturbation the-
ory to evaluate the change of index due to the Kerr effect. The field in the
fiber is mainly transverse. We denote the normalized field profile by

E = a(z)e(x, y) ,

with IEI2 so normalized that its square is equal to the intensity,

IEI2=I,

and

I dx f dyle(x,y)I2=1.

From perturbation theory (3.47), we
constant

6,3 _ f dx f dy 6nl E(x, y) I'

/3 n2 f dx f dy l e(x, y) 12

lal2n2 f dx f dy l e(x, y)14

no f dx f dy le(x, y)I2

a12n2
noAeff

(10.3)

(10.4)

(10.5)

find for the change of propagation

where we have set 3 = w2µoe = w2µocono, and the ratio of the integrals of
the fourth power and the square of the field patterns defines the inverse of
an effective area. Further, we have taken advantage of the fact that the index
profile is almost constant at the value no. Since ,Q : (27r/A)n,,, we find for 5/3

_ 27r 1A n2 Aeff IaI2 (10.7)

The derivation of the propagation constant change did not address specif-
ically the time dependence of the intensity. In fact, (10.7) is the correct ex-
pression when IaI2 is interpreted as the instantaneous power. In order to see
this, one must view the self-phase modulation due to the Kerr effect as a
degenerate four-wave mixing process in which three waves with frequencies
w, w', and w" combine to give a fourth wave with frequency w"'. The fourth
wave is the result of a product of three waves. If the frequency of the fourth
wave is to be close to the frequency of the three waves generating it, of fre-
quencies w, w', and w", then the product must contain one of the three waves
complex conjugated, e.g. the source of the fourth wave, of frequency w"', is
of the form
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f dW f dW'a*(W)a(W')a(W")

where the frequency w"' is

(10.8)

(10.9)

The inverse Fourier transform of the source term in the time domain has a
much simpler appearance, since a convolution transforms into a product:

f dW""e-Iw"t f dwf
=f +W-W') f dweiwta*(W) f dw'e-iw'ta(WI)

= a*(t)a(t)a(t) = ja(t)j2a(t) .
(10.10)

We can now incorporate the Kerr effect into the mode equation (10.1). In the
time domain,

iJ,3a(z, t) = i n21 ja(z, t)12a(z, t) ,

and thus (10.1) becomes

a a" a2 2

az
a(z,t) _ -i 2 ate a(z,t) + inja(z,t)ja(z,t) , (10.11)

with
27r n2

A Aeff

This is the nonlinear Schrodinger equation.
Before we conclude this section, a few words of caution are in order. The

mode patterns of modes on a fiber are w-dependent. The present formalism
ignores this dependence. This is an approximation, but a good one, since
pulses as short as a picosecond contain thousands of wavelengths at an optical
(infrared) wavelength of one micron or so. This means that pulses of one
picosecond are very narrow-band and the assumption of w independence of
mode profiles is an excellent one over the range of frequency components
involved.

10.2 The First-Order Soliton

In the regime of negative group velocity dispersion, /3" < 0, the nonlinear
Schrodinger equation (NLSE) has a "solitary wave" solution of the form (see
Fig. 10.2)
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a, (z, t) = Ao secht I exp(iiIAo12z/2)( ,
TO

with the constraint

IA0IT0 = I/j"I/rc
.

(10.12)

(10.13)

This is a special case of the so-called area theorem [88]. Hence, we have an
infinite number of pulse solutions of varying height and width. The energy of
the pulse is inversely proportional to its width. Indeed,

f dtIa,, (t) 12 = IAoI2To f d(t) sech2(1) = (18"I)2 (10.14)
To To 1. To

10

5

vZ
0

z1Z
0

Fig. 10.2. First-order soliton: (a) intensity profile, (b) square of Fourier spectrum

The solution (10.12) has a phase shift due to the Kerr nonlinearity. The
phase shift is uniform across the pulse and is given by 0(z) = ,cIAo12z/2, as
if the average intensity of the pulse were responsible for it. The distance over
which the phase shift is 7r/4 has become known as the soliton period. This is
a rather strange definition since, strictly, the soliton period should be defined
for a phase shift of 27r. However, we find that a so-called second-order soliton
of initial sech shape, which goes through beats as shown in Fig. 10.3, repeats
itself within this period, hence the name.

The soliton period is a measure of the action of the Kerr nonlinearity. It
is also a measure of the dispersion effects of the fiber, since the two effects
balance each other. If the fiber dispersion varies within distances much smaller
than a soliton period, the pulse integrates the effect and only the average
dispersion need be considered. Similarly, if loss decreases the pulse amplitude
but is compensated by gain within distances much smaller than the soliton
period, the loss and gain can be treated as averaged. This recognition has led
to great advances in the design of soliton fiber communications. At first it was
thought that the loss had to be compensated by distributed gain to obtain
proper soliton propagation, namely by Raman gain of the fiber itself [5].



350 10. Solitons and Fiber Communications

5k01
0 c

Z/Z
0

Fig. 10.3. Second-order soliton (a) intensity profile, (b) square of Fourier spectrum;
IA0IT0 = 2 I/3"I/i; z0 = 47rrIAo12

Nakazawa [87] recognized that this was not necessary, that lumped erbium-
doped fiber amplifiers could be used if spaced by distances much smaller than
the soliton period (e.g. 25 km for typical soliton periods of 330 km).

Thus far we have obtained a family of solutions that differ in height and
width. The pulses have three more degrees of freedom. First of all, the phase
00 of the pulse is arbitrary, as already implied by the complex character
of A0. Further, the time of occurrence t,, of the center of the pulse can be
arbitrary. Finally, the carrier frequency may deviate by dw from the nominal
carrier frequency w0, with the associated time dependence exp(-iw0t) that
has been removed at the beginning of the analysis. The modified solution can
be written down by inspection, and it is left as an exercise for the reader to
confirm that it indeed satisfies the nonlinear Schrodinger equation:

a3(z, t) = IA01 sech
(t - t0 + 1,3"Idw zl

To J

x exp rl20IZZ- exp[-iAw(t-t0)]
.2

(10.15)

The effects of the different parameters on the solution are self-evident. A
time shift has no consequences. A frequency shift causes a change of the
inverse group velocity of -X13"haw and a change of the propagation constant
of - (/3" I dw2 /2, which change the speed of propagation and the phase shift
as shown.

If the carrier frequencies of the two solitons differ, they travel at different
group velocities and one soliton can pass through the other. Solitons have the
remarkable property that they can collide, yet completely recover after a col-
lision. Figure 10.4 shows a computer simulation of a collision of two solitons.
Whereas in a linear system two waves of different frequencies do not interact,
since the excitation of the two waves is simply the superposition of the exci-
tations of the individual waves, a collision of two wavepackets in a nonlinear
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Fig. 10.4. Two colliding first-order solitons

system does not obey the superposition principle. Cross phase modulations
occur owing to the nonlinearity. However, the nonlinear Schrodinger equa-
tion predicts full recovery of two colliding soliton pulses. The collision does,
however, cause phase changes and position changes of the solitons.

The passage of solitons through each other without an effect on their shape
has important implications for the use of solitons in wavelength-division-
multiplexed (WDM) communications. Pulse streams in two different chan-
nels with different carrier frequencies (wavelengths) can pass through each
other. While there are position changes due to individual collisions, they are
small and average out if the signals in both channels are quasicontinuous.
Thus, crosstalk between channels can be avoided. This is not true for mul-
tiplexed NRZ. Here the Kerr nonlinearity causes crosstalk which has to be
combatted by proper choice of channel wavelengths. For the same reasons,
the wavelength spacings of channels in an NRZ system must be wider than
for a soliton system, giving the soliton system a bit-rate advantage.

It is customary to normalize the distance variable in (10.1) to a nor-
malizing distance z,, the time variable to a normalizing time T,,,, and the
amplitude a(z,t) to an amplitude A,,. With 10"jz17/7-,n = 1, KIA,,,Izz,y = 1,
and a(z, t)/An = u(z, t), we obtain

z
-i az u(z, t) = 2 atz u(z, t) + Iu(z, t) lzu(z, t) . (10.16)

We denote the normalized variables as t and z without a subscript so as not
to encumber the notation. The normalizing distance is chosen so that the
optical Kerr effect produces one radian of phase shift within unit distance.
The normalization of the time variable (choice of normalized bandwidth) is
chosen so as to produce equal and opposite effects due to GVD and the
optical Kerr effect on a standard pulse of unity width. The purpose of the
normalization is to arrive at the standard nonlinear Schrodinger equation,
with the exception of a factor 1/2 which has become customary in fiber
soliton theory. In Gordon's notation [91], the solution (10.15) in normalized
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form becomes

us (z, t) = A sech(At - q) exp(iVt + io)

where

dq
= AV

dz

and

dq
= 1(A2-V2)dz 2

(10.17)

(10.18)

(10.19)

Here we retain z for the (normalized) distance variable and t for the time
variable. Gordon uses t for the distance variable and x for the time variable
to emphasize the nature of (10.11) as the nonlinear version of the Schrodinger
equation. Gordon's notation has mnemonic value. A is the amplitude of the
soliton; V is its velocity; q is its position, reminding one of the quantum
notation for position; 0, of course, is its phase.

10.3 Properties of Solitons

In the preceding section we denoted the solution to the nonlinear Schrodinger
equation (NLSE) as a "solitary wave" as well as a "soliton". The term "soli-
ton" is applied, strictly, only to solutions of nonlinear equations that have
certain stability properties, e.g. in a collision of two such waves, the two
components must emerge unscathed. This is the case with the solitary-wave
solutions of the NLSE, and thus the term "soliton" can be rigorously applied.
Before we proceed with the study of collisions, we address the remarkable for-
mation process of solitons.

If an input pulse has an area that lies in the range between 7r/2 and
3ir/2, a soliton forms from the pulse [92]. Figure 10.5 shows the evolution of
a soliton from a square pulse of an area obeying this condition. One sees that
the soliton "cleans itself out" by shedding continuum. Since the continuum
travels away from the soliton in both directions, it has components that are
both faster and slower than the soliton. Their frequencies are thus higher
and lower, respectively, than the carrier frequency of the soliton. (Note the
continuum is of low intensity and thus has linear propagation properties.)
These frequency components are, in part, contained in the original excitation,
but are also generated in the nonlinear processes partaking in the soliton
formation.

The formation process described above has been used to generate solitons
at high bit rates [93-100]. The input is a superposition of two continuous
waves of equal amplitude and offset by a frequency zwo. The result is a
sinusoidal beat between the two waves. If the intensities are such that the
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Fig. 10.5. A square pulse evolves into a first order soliton.

area of the excitation between the two nodes of the beat obeys the soliton
formation criterion, a bit stream of solitons forms after propagating in a fiber
of appropriate length. This pulse formation scheme, followed by an amplitude
modulator, has been proposed as a source for soliton communications.

Next, consider soliton collisions. These can be described by a higher-
order soliton, a soliton of second order, which is also a closed-form solution
of the nonlinear Schrodinger equation, obtainable by the inverse scattering
approach of Zakharov and Shabat. It can be written [911 as (note that we
have substituted x. . for Gordon's zj)

_u Ale'Bl (p*/3e-x2 +
p,3*ex2)

+A2eB2 (p*)3*e-x1 + p/3ex)

Jp!2 cosh(xl + x2) + I0I2 cosh(xi - x2) + 4A1A2 cos(01 - 02)
(10.20)

with

xj = A;t - qj , (10.21a)

03 . = Vjt + cj , (10.21b)

p=Al-A2+i(V1-V2), (10.21c)

a = Al + A2 + i(Vi - V2) . (10.21d)

The qj and cj obey the following equations (compare with (10.18) and
(10.19)):

q' = Aj Vj

and

ddz = 2 (A2 - V2)
J
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The Vj are normalized velocities or carrier frequencies. If they are picked to
be different, (10.20) describes two solitons that are well separated at t -* -00,
collide, and become again well separated as t -* +oo. The solitons experience
a timing shift and a phase shift, but otherwise recover fully. The smaller the
carrier frequency separation between the two pulses, the larger the shifts are.
A collision is shown in Fig. 10.4. When the two pulse envelopes overlap, a
beat between the two carrier frequencies is clearly discernible.

The solution in (10.20) can also be used to study the interaction between
two solitons when they are well separated. This was done analytically by
Gordon [91] and verified experimentally by Mitschke and Mollenauer [101].
The interactions are important in optical communications, since they can also
introduce errors in a bit stream of solitons, whose phases may vary randomly,
and in which some are randomly omitted. Suffice it to state here that some
of these interactions are easily understood. If two solitons of equal phase
are placed close to each other, the potential well produced in combination is
deeper than when they are widely separated. Thus closeness is energetically
favored, which leads to an attractive force. The opposite is true when the
solitons are in antiphase; they repel each other.

10.4 Perturbation Theory of Solitons

Next we consider a perturbation of a soliton by a noise source s(z,t). Per-
turbation theories of solitons can be developed from the inverse scattering
transform [89,102-108]. An alternate approach is to start with the linearized
form of the NLSE and project out the excitations produced by the perturba-
tion using the adjoint functions [6,109]. This latter approach provides more
direct insight into the physics of the processes involved. The equation for the
soliton now reads

z

-i az u(z, t) = 2 atz u(z, t) + Iu(z, t)12u(z, t) - is(z, t) . (10.22)

If the source s(z, t) is small, then u(z, t) can be written u(z, t) = us (z, t) +
z u(z, t), where Au(z, t) is the small deviation of the field from the soliton
solution us(z, t). The equation obeyed by Au(z, t) to first order is

z
-i- -L u(z, t)

2 atz
du (z, t) + 21 us(z, t)12Lu(z, t)

(10.23)

+us (z, t) ,6u* (z, t) - is (z, t)

This is a linear equation with a source. The source can be represented by
a sequence of local sources at different positions z', proportional to 5(z -
z'). Each excitation can then be expressed in terms of the solutions of the
homogenous equation
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a2
-i az Au(z' t)

2 8t2
Au (z, t) + 21u3 (z, t) 12,Au(z, t)

(10.24)

+us (z, t)

Linear homogeneous equations are solved by finding their eigenfunctions and
writing the solution as a superposition of the eigenfunction excitations. The
amplitudes of the excitations are projected out using orthogonality among the
eigenfunctions, if the system is self-adjoint. Self-adjointness is a natural con-
sequence of energy conservation: solutions with different time dependences
must be orthogonal, since if this were not the case, the energy would be
time-varying. Equation (10.22) is not self-adjoint. Even though the NLSE
is derivable from a Hamiltonian, the perturbation equation describes excita-
tions in the presence of a pump us (z, t), and hence the energy of the perturba-
tions need not be conserved. The perturbations may acquire energy from the
pump and may lose it to the pump. Orthogonality can be achieved with the
solutions of the adjoint equation, whose solutions LXu(z, t) obey cross-energy
conservation:

d +o0 1

fzRe If dtLXu*(z,t)du(z,t)I =0. (10.25)
JJ

It is easily shown that the system adjoint to (10.22) is

2

2 u(z, t)-ia
- u(z't) 2 t2

u(z, t) + 21us(z, t) 1

-u2(z, t)

(10.26)

Note the sign change in the last term. This sign change corresponds to a 90
degree phase shift of the pump. The pump changes the index via the Kerr
effect. This phenomenon is an example of a "parametrically" driven system,
the parameter that is driven is the index of the fiber. Such systems will be
discussed in the next chapter. We shall find that they give rise to solutions
that grow or decay exponentially with time, depending upon their phase
relative to the pump phase. Or, alternatively, a 90° phase change of the pump
transforms a growing solution into a decaying one and vice versa. Whereas
growing solutions cannot preserve energy, the cross-energy of growing and
decaying solutions can be preserved. From this brief discussion, illustrated
more thoroughly in the next chapter, one may surmise that the adjoint of a
parametrically driven system is obtained from the original system by a 90°
phase change of the pump. This explains the sign change from the original
equation (10.24) to its adjoint (10.26).

We write the perturbation as a superposition of changes in the four soliton
parameters and of the continuum (we use notation based on Gordon's form
of the solution in (10.17)):
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Lu(z, t) = [Z A(z) fA(t) +,60(z) fi(t) + dq(z) fq(t)
(10.27)

+ QV (z) fv(t)]e'Z/2 + 'AU, (Z' t)

where :Au, (z, t) is the continuum. The four perturbation functions fp(t), P =
A, 0, q, and V, are derivatives of the soliton solution with respect to its four
parameters, evaluated at z = 0:

fA(t) aAu,(0,t) = (1 - t tanht) secht , (10.28a)

fi(t) = aus(0,t) = i secht , (10.28b)

u, (0, t) = tanht secht , (10.28c)fq(t) =
5-4

fv(t) = aVus(0,t) = it secht . (10.28d)

With no loss of generality, the unperturbed soliton solution has been
assumed to have A = 1, 0 = 0, q = 0, V = 0. The adjoint equation has similar
solutions. They are orthonormal to the set in (10.28) and are found to be

LA(t) = sech t , (10.29a)

fo(t) = i(1 - t tanht) sech t , (10.29b)

fq (t) = t sech t , (10.29c)

fv (t) = i tanh t sech t. (10.29d)

The adjoint functions must be orthogonal to the continuum. Indeed, at
t -4 +oo, the continuum is completely dispersed and has no overlap with
the functions that occupy the region around the soliton. Because of the con-
servation law, the orthogonality must hold for all time.

When (10.27) is introduced into the governing equation (10.23), the sec-
ond derivative of fA(t) with respect to time produces a term proportional
to fi(t). This simply means that a change of amplitude causes a cumulative
change of phase, since the contribution from the Kerr effect has changed.
Similarly, the second time derivative of fv(t) produces a term proportional
to fq(t); a change of carrier frequency causes a cumulative change of dis-
placement due to a change in group velocity. The perturbation parameters
are projected out by the four adjoint functions. The result is four equations
of motion for the soliton parameters:

dz
DA SA(z) , (10.30)

dz AO
zAA+ SO (z) , (10.31)
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dzAq=,AV+Sq(z), (10.32)

dz
AV Sv (z) .

where the sources are given by

(10.33)

Sp(z) = Re [fdtf(t)e_iz/2s(z,t)] . (10.34)

These equations can and will be augmented to include filtering. Before
we proceed, we take note of the fact that the perturbation analysis permits
large changes of AA, Ao, zlq, and ,AV, as long as these changes are gradual.
Phase shifts, displacements, and frequency shifts leave the soliton envelope
unchanged. Even large amplitude changes may be incorporated if the projec-
tion functions in (10.26) are generalized to an arbitrary value of the amplitude
A, as long as the sources Sp(z') are evaluated at any cross section z' consis-
tent with the state of the soliton at that cross section. Then the parameters
,AA, Qo, ,Aq, and dV are allowed to become large. We emphasize this fact
by dropping the prefix L7 henceforth and replacing .6A by A -1, and ,AV by
V:

dA
=SA(z), (10.31a)

dz

dZdz=A-1+SS(z), (10.32a)

dq =V+Sq(z) (10.33a)
dz

dV dz= Sv(z) (10.34a)

10.5 Amplifier Noise and the Gordon-Haus Effect

The equations of motion of the four soliton perturbation parameters (10.30)-
(10.33) contain sources. Linear optical amplifiers have unavoidable noise, as
pointed out in Chap. 7. Loss also introduces noise sources that conserve
commutator brackets and in doing so conserve zero-point fluctuations. In
long-distance soliton transmission, the loss of the fiber is compensated by
gain. In practice, the gain is "lumped", i.e. is provided in a fiber amplifier of
length negligible compared with the soliton period. The gain can be treated
as uniformly distributed if the spacing between amplifiers is much shorter
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than a soliton period. Since the propagation along the fiber is nonlinear,
noise fluctuations added in transit through the amplifier are incorporated
into all four soliton perturbations as described by (10.30)-(10.33). The soliton
experiences a time displacement and a frequency displacement every time it
passes through an amplifier. The time displacements turn out to be too small
to worry about, even when accumulated in a fiber of transoceanic length.
However, frequency changes are transformed into time displacement via the
GVD of the fiber. This frequency-induced timing jitter has become known as
the Gordon-Haus effect [6]. This effect imposes a severe limit on long distance
soliton propagation unless proper precautions are taken.

We shall start with distributed gain that compensates for the fiber loss.
Lumped gain is, of course, the practical case. We shall then consider the effect
caused by lumped gain. Suppose the normalized amplitude gain coefficient is
a. If the gain compensates perfectly for the loss, (10.17) remains unchanged,
assuming that noise can be neglected. However, for long-distance propagation
with net gains in the 100 dB range, amplifier noise cannot be neglected. Am-
plifier noise appears as a source s(z, t) in (10.22). If the amplifier bandwidth
is much larger than the signal bandwidth, the source may be considered to
be a white noise source.

Equation (10.22) contains only normalized quantities. Hence the correla-
tion function of the noise source

(s(z, t)s*(z', t')) = hw0X2ab(z - z')b(t - t')

must also be normalized. First of all, the amplitude gain coefficient a is
normalized by multiplication by zn,, i.e. by replacing az,,, by its normalized
counterpart an,. We do not want to encumber the notation by attaching sub-
scripts "n" to all normalized quantitities. Whether quantities are normalized
or not will be obvious from the context. Replacement will be indicated by ar-
rows, e.g. az.,,, --4 a. The photon energy is normalized by division by IAoj2T,,,.
The unit impulse functions call for normalizing factors zn and 7-". But these
will be removed by integration over the normalized z and t, and so they need
not be introduced at this stage. Thus, the normalized form of the noise source
is

(s(z, t)s*(z', t')) = 2aNb(z - z')S(t - t') , (10.35)

with N = (hwo/IAoj2Tn)X. This shows that the normalized noise source is in-
versely proportional to the photon number in the pulse. The more intense the
pulse, the less the influence of the noise source. Since the noise is described
in terms of a correlation function, the response must be similarly expressed.
The responses take the form of the real part of complex projections, meaning
that only the in-phase or the quadrature component of the noise represented
by (10.35) contributes to any one of these projections. Since the noise is sta-
tionary, the in-phase and quadrature components have equal intensities, each
with correlation functions equal to half the value of (10.35). The correlation
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function of the noise source in (10.34a), driving the frequency parameter V,
is

+00 +00
(Sv(z)Sv(z')) = cif f dt I dt' 8(t - t') f (t) f v(t')6(z - z')

00

f+00
= aN

J
dt tanh2 t sech2 t b(z - z')

00

= 3cA (z-z').
(10.36)

The noise source driving the displacement q (note that A = 1) is

(Sq (z)Sq(z')) = aN
J

+00

dt
J

+oO

dt' 6(t - t') f 9(t) f 9(t')6(z - z')
00 00

f+00
= aN

J
dt t2 sech2 t 8(z - z')

00

2
= -ceM(z-z').

The correlation function of the frequency parameter is

(V (z)V(z )) =
(JZ

dz S(z ) dz Sv(z )

tam
Z dz"' = 2

{-_J
z' for z' < z- 2" fz for z'>z

(10.37)

(10.38)

The autocorrelation at z = z' grows linearly with z. Thus the frequency
fluctuations grow like the displacement in a random walk. The mean square
fluctuations of the displacement are produced by frequency fluctuations on
one hand, and a noise source driving the displacement directly on the other
hand. Since the two noise sources are independent, the mean square fluc-
tuations that they produce are additive. Considering first the mean square
fluctuations due to the noise source Sq(z), we have for the fluctuations at a
normalized distance L, in analogy with (10.38),
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(1L fL
(q*(L)q(L))q = dz'Sq* (z')J dz"Sq(z")

(10.39)

7r
2 rL

dz" _ I26NL
CVJV

6 0

These mean square fluctuations grow linearly with L. They correspond to a
simple random walk of the displacement variable. The mean square fluctua-
tions caused by the frequency fluctuations are

(q*(L)q(L))v =
(JL

Ldz"V*(z)
fo

dz"V(z")

( 10.40)

L z"
z"

3

= 2
2 dz dz" = 2aN

33 Jo Jo 3

The frequency fluctuations experiencing a random walk (linear growth with
L) translate into a growth of the displacement, since pulses with different
carrier frequencies travel at different speeds, and this effect becomes severe for
large distances of propagation. This is the so-called Gordon-Haus effect [6].
It leads to random displacements of pulses, which may end up in neighboring
time slots, causing bit errors.

The analysis thus far has been in normalized units. The standard soliton
was secht, where the normalization time Tn was equal to the pulse width T.
The mean square displacement fluctuations (q* (L)q(L)) were normalized to
the pulse width. The bit-error rate can be computed from these fluctuations
directly once the pulse width to bit interval ratio is chosen. The right-hand
side of (10.40) is converted to physical dimensions as follows:

(q*(L)q(L))v = - L3 4 - -- two 1 L3/zn
3 3 3 1AnI2XTn

3 (10.41)

Using the relations 1(3"I zn/T,n = 1 and r, IAn12 zn = 1, we can write the above
in terms of unnormalized parameters:

3

(q*(L)q(L))v = 3 hL.OXI/311I 3L3 . (10.42)

The effect is proportional to the Kerr coefficient r,, indicating that the jitter
is Kerr-induced. The jitter increases with the cube of the distance and is
proportional to the GVD. Reducing the GVD reduces the effect and this fact
is used in the design of the fiber. Ideally, the group velocity dispersion should
be made as small as possible. There is a lower limit set by the minimum energy
required for a given signal-to-noise ratio. Since the bit rate is proportional to
1/T, we find that the jitter increases with the cube of the bit rate.
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Fig. 10.6. The distance that can be covered with a bit-error rate of 10-9; dispersion
2 ps/(nm km), peak soliton intensity 90 mW; after [110]

Figure 10.6 shows a plot of the distance that can be covered with a bit-
error rate equal to or better than 10-9 at 5 Gbit/s transmission. The shaded
area is the allowed range. There are two boundaries: one, "denoted amplitude
noise", is set by requiring a sufficiently large signal-to-noise ratio that "ones"
are not mistaken for "zeros" and vice versa. This is due to the additive nature
of the ASE noise of the amplifiers. The other boundary is due to the nonlinear
aspect of the noise-timing jitter as a result of random frequency shifts. For a
trans-Atlantic distance of 4800 km, the allowed range of signal power is quite
narrow. This was an aspect of soliton transmission that had to be improved.
The improvement came with the introduction of filters.

10.6 Control Filters

In work on noise in fiber ring lasers at MIT, it was found that an effect
analogous to the Gordon-Haus effect appeared in such systems as well, but
the introduction of filters tended to alleviate it. This work was not published
until 1993 [111]. However, the connection was made with long-distance pulse
propagation and it was found that the introduction of filters every so often
into repeaterless soliton transmission systems [112] could control the Gordon-
Haus effect. Independently, Kodama and Hasegawa also arrived at the same
conclusion [113]. Let us look at the theory explaining this action of filters.

We consider the simple case of a continuous distribution of filters (lumped
filters generate continuum and are thus less ideal; such continuum radiation
will be considered later on). The fundamental equation (10.22) is altered to
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-1au(z, t) = 1 a2 u(z, t) + I u(z t) I2u(z, t) - i.a u(z, t) - s(z t)
1

az 2 8t2 f2f cat
2

(10.43)

where 1/Qf expresses the filtering per unit (normalized) distance. The soli-
ton perturbation equation changes accordingly. Since the filtering is assumed
to be a small perturbation of the soliton, one may solve the fundamental
equation (10.22) without the filtering term, and treat the effect of the filter
as a new perturbation term in the linearized perturbed equation of motion
(10.24):

2

-ia Lu(z,t) =
2 ate

Du(z,t) + 21 us(z,t)I2 u(z,t)

1 82
+us(z,t)Au*(z t) -12ZU8(z,t) -s(z,t)

f
(10.44)

For the soliton solution we take (compare (10.17))

u9(z,t) = AsechAtexp[i(V -V0)t] , (10.45)

where V - V. expresses the frequency deviation of the soliton from the (nor-
malized) center frequency V. of the filter. We use the ansatz (10.27), except
that now we replace AV with V - V0. We carry out the projection with the
adjoint functions. The filtering term introduces a damping constant into the
equation of motion of V:

dV
dz_ -ry(V - V0) + Sv(z) ,

where

4
'Y

_
302f

(10.46)

(10.47)

As the carrier frequency deviates from the center frequency of the filter,
the part of the spectrum farther away from the center experiences greater
attenuation than the part nearer the center. The spectrum is pushed towards
the center of the filter response. Thus, we have chosen V. as the steady-state
frequency of the soliton.

For the purpose of the analysis in this section, we set V,, = 0. The carrier
frequency exposed to the driving source of noise does not experience a random
walk, since the filter limits the deviation. First, we compute the correlation
function of V(z). Since

V(z) = e-ryZ dz' e'Iz'Sv(z') , (10.48)Z

0
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we obtain

(V*(z)V(z'))

2
z z

= 2aNe--Y(z+z') dz" dz"' 6(z"" -
J0 0

z"'
e2,yz,,,

= 3aNe-7(z+z') d
10Z

2 W[e-7(z-z') - e-7(z+z')j/27

= 2 M[,--Y(z'-z) - e--I(z+z')1/2'Y

for z' < z

forz'>z.

(10.49)

For y -> 0, the result agrees with (10.38). When we introduce (10.49) into
the equation for the mean square fluctuations of position, we find

L(9*(L)4(L))v = (
J

dz"V*(z")J Ldz"'V(z"') )
0 0

= -2aAr foL dz"
zdz"' e2tiz- 1

(10.50)
3 2y

=
23

LyL + 2 (1 - e-2 yL) - 2(1 - e_ -yL)

It is clear that as L -3 +oo, the position fluctuations grow linearly with L.
Introducing physical dimensions, (10.50) becomes, in the limit of large L,

(4*(L)4(L))v
2a(X)hw 44,a"IL

(10.51)=
3-y27'3

where L is the physical length and y is the filtering constant, y = 4/3,2fr2
in units of inverse length.

Figure 10.7 shows a plot of the range of distances reachable with filters
in place. The range of permissible powers for trans-Atlantic and trans-Pacific
distances is now greatly increased. There is another limit imposed by soli-
ton attraction, as mentioned earlier. This soliton attraction effect can be
suppressed by a weak modulation of the soliton energy so that neighboring
solitons end up with slightly different peak intensities. As they propagate
along the fiber, they experience different Kerr phase shifts. Thus, adjacent
solitons are alternately in phase and out of phase; the attractive force gives
way to a repulsive force and back again. In this way the soliton attraction
effect can be eliminated. It should be noted that the bandwidth of a cascade
of filters spanning a transoceanic distance tends to be extremely narrow so
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that "linear" signal transmission at a high bit rate would be impossible. It
is the remarkable stability of the solitons that permits them to recover their
bandwidth after each filter via the nonlinearity of the fiber, whereas linear
signals cannot do so.

Another benefit of the filters is one not associated with noise reduction.
Filtering provides stabilization against excessive energy changes of the soli-
tons as they propagate along the fiber cable. An increase of the soliton en-
ergy above the design average shortens the soliton and broadens its spec-
trum. Pulses with a broader spectrum experience excess loss and thus energy
increases are reduced by filtering. Energy decreases are similarly combat-
ted. This effect is particularly advantageous when solitons are wavelength-
division-multiplexed. The filters for such an application have periodic pass-
bands, one for each channel. Since the gain varies over the erbium bandwidth,
different channels experience slightly different gains. The energy stabilization
by filtering acts against gain variations.

Filtering, however, is associated with a noise penalty. The solitons require
increased gain to compensate for the loss of the filters, which is, per unit
length,

a +00

dtIu3(z,t)
az _00

I2

1 f+00 r z z
119_

f J dt Lus (z, t) atz us (z, t) + us (z, t) atz us (z, t)] (10.52)

at us (z+ t)
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Noise at the center frequency is not affected by the filters and sees excess
gain. This noise eventually limits the propagation distance. Mollenauer and
his coworkers [114] arrived at an ingenious way of eliminating this effect by
gradually changing the center frequency of the filters along the cable. In its
simplest manifestation, the effect of sliding guiding filters is incorporated
into (10.46) by noting that V stands for the frequency deviation from the
soliton carrier frequency w0. If the normalized filter center frequencies V0(z)
are functions of distance along the fiber, then (10.46) becomes

dV = -,y[V - V0(z)] + Sv(z) .
dz

(10.53)

Solitons adapt to the sliding guiding filters of continuously varying V0(z)
by changing their carrier frequency. Because their carrier follows the center
frequency of the filters, their loss is less than the loss of the linear noise,
which cannot adapt in this way. Off hand, one would expect that up-shifting
or down-shifting the filter center frequency along the propagation direction
would result in the same amount of noise suppression. If Fabry-Perot-type
filters are used, so as to permit WDM transmission, up-shifting leads to
better noise suppression owing to a subtle effect. It is clear that the soliton
carrier frequency will deviate from the center frequency of the filter passband:
since the solitons are continuously forced to change frequency, their carrier
frequency lags behind the shift. As they move off the filter center frequency,
higher than second-order GVD is experienced by the solitons. The sign of
the third-order GVD is opposite for opposite deviations from the filter center
frequency. It so happens that up-shifting the sliding guiding filters introduces
a third-order GVD of a sign that is less harmful than that for down-shifting
[114].

10.7 Erbium-Doped Fiber Amplifiers
and the Effect of Lumped Gain

The amplifying characteristics of an erbium-doped silica fiber amplifier are
shown in Fig. 10.8 [115]. Pumping has been demonstrated at 800 nm, 980
nm, and 1480 nm. Note that because of the long lifetime of the metastable
state, the pump power required to achieve a 30 dB gain is only of the or-
der of 40 mW, easily supplied by a commercially available diode laser. Three
typical amplifier configurations, forward pumping, reverse pumping, and bidi-
rectional pumping, are shown in Fig. 10.9 [116]. The ASE spectrum indicates
some gain nonuniformity, which can be made more uniform with additional
Al doping [117].

The variation of the pulse energy with distance along the fiber cable for
a 25 km spacing of amplifiers is shown in Fig. 10.10. Note that the variation
is large, and hence one would assume that the distributed soliton model
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Fig. 10.8. The amplifying characteristics of an erbium-doped fiber amplifier [115]

represented by the NLSE cannot be applied. Fortunately, this is not the
case. For typical fiber parameters the soliton period is greater than 200 km.
Remember that a soliton experiences a phase shift of 27r over a distance of
eight soliton periods. Thus the nonlinear change of the pulse over 25 km is
small. Since the nonlinear change balances the linear dispersive change, the
latter is small as well. Thus, the 25 km distance may be considered to be a
"differential" distance. The propagating pulse is an "average" soliton [118]
or a "guiding center" soliton [119]. Its average phase shift is computed from
the cumulative small phase shifts in each 25 km segment.

Mollenauer et al. used the experimental setup shown in Fig. 10.11 [120].
A fiber ring with three amplifiers was loaded through a coupler and filled
with a pseudorandom sequence of ones and zeros. The excitation was allowed
to circulate in the ring and, after a chosen number of transits, coupled out
and detected. The microwave spectrum analyzer was a convenient means
for measuring the pulse jitter. Figure 10.12 shows the experimental results
without the use of filters. The jitter tracks the prediction of the Gordon-
Haus effect. Figure 10.13 shows the results of a measurement using the sliding
guiding filters. As one can see, the propagation distance for a given bit-error
rate has been greatly increased. There are noise contributions other than
those attributable to the Gordon-Haus effect. It is believed that these are
due to a piezo-optic interaction between solitons [121,122].
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10.8 Polarization

Thus far we have not discussed the fact that fibers have a natural linear
birefringence (of the order of 10-6-10-7, i.e. a transformation from one linear
polarization to the orthogonal polarization occurs in 106-107 wavelengths).
What is the effect of the birefringence on soliton propagation?

If the birefringence were fixed and did not vary randomly along the
fiber, the effect would indeed be severe. We have mentioned the remark-
able properties of solitons resulting from the integrability of the nonlinear
Schrodinger equation. When two polarizations are coupled by birefringence,
they are described by two coupled NLSEs, which are not integrable in gen-
eral. Thus, one might expect that soliton propagation would be possible only
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filled

in a polarization-maintaining (PM) fiber, which is more expensive than the
regular fiber and also possesses higher losses. Fortunately for soliton commu-
nications, a regular fiber will do, for reasons we shall now explain.

The coupled nonlinear Schrodinger equations for the x and y polarizations,
represented by the envelopes v(z, t) and w(z, t), are [123,124] (compare 3.71))

z

azv(z,t) = -i2/3 .v(z,t)+i3{[31v(z,t)1 2
(10.54)

+2[w(z, t)12]v(z, t) + w2(z, t)v*(z, t)}

and
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Fig. 10.12. Experimental confirmation of the Gordon-Haus effect, after [120]
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Fig. 10.13. Experimental results with sliding guiding filters, after [114]: 10 Gbit/s
(solid circles); 2 x 10 Gbit/s WDM random bit pattern in interfering channel
(squares); 2 x 10 Gbit/s WDM regular pattern in interfering channel (solid squares).
The measured channel always contained a 214 bit pseudorandom word

2

azw(z,t) = +i3{[3jw(z,t)j2
(10.55)

+2Iv(z,t)I2]w(z,t) +v2(z,t)w*(z,t)} .

There are cross-coupling terms, both phase-independent and phase-dependent.
The latter are the so-called "coherence terms" w2(z,t)v*(z,t) and v2(z,t)
w* (z, t). In the presence of birefringence, phase coherence is not maintained
and the effect of the coherence terms averages out to zero. However, the
remaining pair of coupled equations is not integrable. However, if the non-
linear effects are much weaker than the birefringence effects, the two polar-
ization states wander all "over the place" within distances short compared
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with the distance within which soliton effects play a role. Thus, if (v(z, t))
and (w(z, t)) represent average orthogonal polarization states, rather than
linear polarizations, the nonlinear phase shift due to each becomes equal on
the average [124]:

2

az(v(z,t)) = +i9g
(10.56)

+I (W (Z' t))12] (V (Z' t))
,

2

az(w(z,t)) _ 2at2(w(z,t))+i
9

[I(w(z,t))12

(10.57)

+I (v(z, t)) 12] (w(z, t)) .

This is an equation pair that has been shown by Manakov to be integrable
[125], and which gives rise to solitons of arbitrary polarization.

Polarization hole burning is another important effect that is related to
the saturation properties of erbium-doped amplifiers. Nominally, the ampli-
fier gain is polarization-insensitive. However, if one polarization saturates
the amplifier, a slight excess gain is left over in the other polarization. Noise
can grow in this polarization and affect the bit-error rate. This effect, first
observed by Taylor in the early experiments on open-loop repeaterless sys-
tems (namely in experiments in which the pulse stream was propagated over
fibers having a length equal to the full transoceanic distance) [126], was later
explained by Mazurczyk and Zyskind [127]. The effect is circumvented by
varying the input polarization at a rate (> 10 kHz) faster than the relax-
ation rate of the erbium-doped amplifier [128].

10.9 Continuum Generation by Soliton Perturbation

When a soliton is perturbed by noise or by other causes, such as third-order
dispersion, lumped gain, or lumped loss, it sheds continuum. Nicholson and
Goldman [129] used conservation laws to compute the soliton radiation due to
damping. Kaup found a basis for the continuum states using a perturbation
approach [105].

In the ansatz (10.27) the continuum was taken into account by the term
Du,(z, t). The perturbation of the four soliton parameters was evaluated by
projections that are orthogonal to the continuum. In this section we evaluate
the generation of the continuum. We express the continuum as a quasi-Fourier
superposition [130]. The basis functions used were first described by Gordon
[131]; they are simple complex exponentials outside the time interval occupied
by the soliton and are connected across the time interval occupied by the
soliton by solving (10.24).
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Let us turn to the derivation of the basis functions. Consider a function
v(t, z) that obeys the linear dispersion equation

z
-iazv(t, z)

2
8tzv(t' z) . (10.58)

Then the function f (t, z) defined by

a2 a
Pt, z) atz

v(t, z) + 2 tanh t -v(t, z)
(10.59)

- tanhz t v(t, z) + us (t, z)v* (t, z)

is a solution of the linearized perturbed nonlinear Schrodinger equation
(10.24). This can be confirmed by direct substitution of (10.59) in (10.24).
One observation can be made immediately about (10.59). Outside the time
interval occupied by the soliton, Itl > 1, tanh t = ±1 and us(t, z) = 0. In this
regime the continuum travels unperturbed with no influence of the soliton

z

ft,z) = -atzv(t,z)±25tv(t,z) -v(t,z) . (10.60)

If we take as a special case the exponential solution of (10.58)

v(t, z) = cexp(-i12t) exp[-i(Q2/2)z] (10.61)

and introduce (10.61) into (10.59), we find

f (t, ,f2, z)

= c(Q2 - 2iQ tanh t - tanh2 t) exp(-iQt) exp[-i(Q2/2)z] (10.62)

+ c*sech2 t exp(iz) exp(iQt) exp[i(02/2)z] .

The constant c is chosen to be a complex number of magnitude unity. The
phase of c fixes the relative phase between the continuum and the soli-
ton. Hence, the t, z dependence of the function changes as the phase of c
is changed. It is clear that the function f (t, z) is a simple exponential and
of magnitude 1 + S?2 on both sides of the soliton but of different phase on
the two sides. Strictly, two sets of functions f (t, (1, z) are required for the
expansion; one set is the in-phase set, which we shall denote by the subscript
"c" reminiscent of "cosine", for which c = 1, and the quadrature set, which
we shall denote by the subscript "s" reminiscent of "sine", for which c = i.

The functions f,, (t, (1, z) and f, (t, Q, z) are used as the basis set of a quasi-
Fourier expansion of the continuum. The continuum is constructed from the
superposition

00

oucont(t, z) = f 2- [FF(Q)fc.(t, (1, z) + F3(Q)fs(t, (2, z)] . (10.63)



372 10. Solitons and Fiber Communications

The coefficients Fi(Q), i = c, s, are found by projection with the adjoint of
(10.63), obeying the adjoint differential equation (10.26). The adjoint func-
tions f.. (t, fl, z) and the functions fi (t, (1, z) obey the orthogonality relation

Re I
J

dt f (t, f2, z) f j (t, f2', z)1 = 8(1? - Q')6ij . (10.64)

The orthogonality relation holds not only for i = c, s, but also for the en-
tire set of functions i = c, s, n, 0, x, p. Since the adjoint differential equation
(10.26) looks like (10.24), except for the sign reversal in front of us(t,z),
the adjoint solutions have the appearance of (10.62) with a sign reversal of
us (t, z):

f i(t, Q, z) = c(d22 - 2i,f2 tanh t - tanh2 t) exp(-iQt) exp[-i(,f12/2)z]

- c*sech2 t exp(iz) exp(iQt) exp[i(S72/2)z[ .

(10.65)

The functions fi (t, z) and f (t, z), i = c, s, are defined over a time interval T
that is, ideally, infinitely long. In normalizing them over T, one may ignore
the short interval occupied by the soliton, over which the functions experience
a rapid change. Thus we find for Jel

fT/2
lim Re J dt f * (t, ,fl', z) f j (t, ,fl, z)

T-4oo T/2
-2

limT,. cjc (.f22 + 1)2T if ,R = 1?' and i = j

0 if f2 54 1?' and/or i j

= 27rb(Q - ,fl')bij ,

with

(10.66)

(ciI = (Q2 + 1)2 (10.67)

The delta function has the value T/2-7r over the frequency interval 'AS2 =
21r/T.

Figure 10.14, taken from [1301, shows the real part of the basis functions
fi(t,1, z) in two dimensions as functions of t and f2, for the in-phase and
quadrature cases, c = 1 and c = i.

The coefficients Fi(Q) are obtained from (10.63) using the orthogonality
condition (10.64):

Fi (.f2) = Re f00 dt zu(t, z) f i (t, Q, z) . (10.68)
00
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Fig. 10.14. Real part of f f (t, fl, 0) and fs (t, fl, 0) [1301

The quasi-Fourier component amplitudes of the continuum can be evaluated
at any cross section. If the change Au(t) is imposed at z = 0, then (10.68) can
be used to evaluate the continuum generated by this change, setting z = 0.

The formalism can be illustrated by a simple and important example:
the excitation of continuum in a sudden amplification step. A soliton sech t
is changed abruptly into a pulse (1 + g) sech t. The change of the pulse is
g sech t. This change is partly incorporated in the new soliton formed from
the pulse and partly imparted to the continuum. The continuum portion is
evaluated from the projection (10.68) (see Appendix A.15 for the integrals):
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F, (S-2) = Re f
00

dt g sech t

1 (f22 + 2i,f2 tanh t - tanh2 t) exp(iQt)
X (10.69)

(Q2 + 1)2 _sech2 t exp(-i,f2t)

g
f2+ 1

sech (2 ,f2)
a

and

F, (Q) = 0 .

This is the continuum generated in one amplifying process. Continuum is
generated in the repeated amplifying process of solitons on a transoceanic
cable. This process is slightly different from the one just considered, since
the continuum excited by the preceding amplifiers accompanies the soliton in
its passage through every amplifier. The interested reader is referred to the
literature for further details [130,1311.

It should be pointed out that the first-order analysis does not conserve
energy. Indeed, the energy in the continuum is of second order and the change
of the energy of the soliton is zero in the first-order analysis. However, energy
loss from the soliton can be evaluated by noting that most of the energy
distribution of the continuum lies outside the interval of the soliton. Thus
one may compute the energy in the continuum to second order and conclude
that this energy has been extracted from the soliton. In this way, a first-order
analysis can yield answers correct to second order.

10.10 Summary

This chapter developed soliton solutions to the nonlinear Schrodinger equa-
tion (NLSE). Perturbations of the soliton, such as by noise or by lumped
gain, were treated by a perturbation theory based on the linearized NLSE
and its adjoint. In this way we derived the Gordon-Haus jitter. This jitter
is the consequence of amplifier-noise-induced carrier frequency changes. We
showed that the introduction of filters can reduce this jitter. Perturbations of
solitons can cause radiation, i.e. excitation of a continuum. The continuum
solutions form a Fourier-integral-like basis set, in terms of which the radia-
tion can be expanded. It is of interest to note that the continuum solutions
(10.62) are solutions of a linear partial differential equation with scattering
wells that are squares of hyperbolic secants. The depths of the wells are in
the ratio of 3 to 1 for the in-phase and quadrature components, respectively.
What is remarkable about these solutions is that they are traveling waves of
equal amplitude on both sides of the well. Thus they represent solutions of a
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scattering problem in which the wells are "reflection-free": no incident power
is reflected. The sole effect of the scattering is to cause a phase change of the
incident wave in passage through the well.

As mentioned before, long-distance optical-fiber communication with soli-
tons is competing with existing "linear" transmission schemes using the NRZ
format. Solitons are going to prevail only if they offer higher bit rates at no in-
crease of cost per bit. Cost increases with complexity. Thus, soliton systems
must use sources and components that are not significantly more complex
than those currently employed in NRZ transmission.

The current estimate is that solitons could support twice the bit rate per
channel of an NRZ system, and that the channels of a soliton system could
be spaced three times more closely [132]. This would give them a sixfold
advantage when bit rates much higher than 5 Gbit/s are called for.

With regard to cost, the first issue is the source of the bit stream. Off
hand, one would expect that the soliton source would have to emit proper
sech-shaped pulses followed by a modulator to represent the ones and zeros. It
turns out, however, that a regular NRZ source followed by a phase modulator
at an appropriate power level [133] can be used. As the phase-modulated
NRZ signal propagates along a fiber equipped with sliding guiding filters, it
reshapes itself into the appropriate soliton stream. The continuum generated
in the process is eliminated by the filters. Thus no new sources are in fact
necessary.

The sliding-guiding-filter concept is an extremely effective way to increase
bit rate and/or distance of transmission. It does imply, however, that the am-
plifier "pods" that are sunk into the ocean are not identical. This is currently
a point of contention with the system designers. Nonlinear fiber loops for the
suppression of the narrow-band noise have been proposed [134-137]. Incor-
poration of such loops would make the pods identical, but this additional
component makes soliton transmission less attractive compared with NRZ.
Other schemes are currently under investigation.

There is also the problem of supervisory control. In a transoceanic cable,
one fiber is used for transmission in one direction and another fiber in the
opposite direction. At every amplifier stage, a small fraction of the signal
propagating in one direction is tapped off and sent in the opposite direction.
The bit stream is then amplitude-modulated at a very low rate, enabling
one both to obtain information about the state of the amplifiers along the
cable and send commands for adjustments in the individual pods [138]. This
simple scheme is not acceptable for soliton communications. Since the effect
of amplitude modulation is removed by the filtering, no low-level signal can
be returned in the fiber carrying the bit stream in the opposite direction.
Thus, the supervisory control in a soliton system is an important issue. It
has been addressed in a patent [139].

In conclusion, we may state that repeaterless propagation of signals with
solitons has made enormous progress in recent years. It is an example of a
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rapid deployment of a sophisticated physical phenomenon for practical use.
The work on soliton transmission has spurred on the development of "linear"
NRZ repeaterless optical-fiber transmission, which has already been deployed,
The deployment of soliton optical-fiber transmission will have to overcome
the stiff competition presented to it by the NRZ systems.

Problems

10.1* Find the energy of a soliton of 20 ps full width at half maximum.
Typical fiber parameters are:

Aeff = 80 µm2; A = 1.55 nm; n2 = 3 x 10-1fi cm2/W; 20 ps2/km .

10.2* Construct a second-order soliton from (10.20) with Al = 1, A2 =
3,V1 = V2 = 0, and q, (z = 0) = q2 (z = 0) = 0. Show that it acquires the
form of a simple sech. Show also that it repeats its envelope within a distance
that is eight times shorter than the distance within which the phase of the
fundamental soliton changes by 21r.

10.3 Use the solution (10.20) to study the collision of two solitons with
Al=A2=1, and V1=-V2=V.
10.4 Draw a two-dimensional graph of the amplitude of the second-order
soliton of Prob. 10.2.

10.5 Draw a two-dimensional graph of the propagation of the amplitude of
the second-order soliton with Al = 1, A2 = 2, V1 = V2 = 0, q, (z = 0) = 0,
and Q2(z = 0) = 0-

10.6 Determine the effect of third-order dispersion a"' on the four soliton
parameters, assuming that it acts as a perturbation.

10.7* Determine the effect on a soliton of lumped loss L (1 - G << 1). Which
of the four perturbation parameters is affected?

10.8 The loss of a fiber at 1.5 µm is 0.2 dB/km. The loss is compensated
by distributed gain. Suppose that the bandwidth of noise accepted is that of
the signal bandwidth of 10 GHz.

(a) Find the ASE noise power after 5000 km of propagation.
(b) Suppose that the gain is lumped and the amplifiers are spaced 50 km

apart. What is the increase of noise due to the lumping of the amplifiers?
SetX=2.
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Solutions

10.1 The full width at half maximum follows from sech2(zlt/ro) = 1/2, which
gives 20t = 1.76r0. The balance of the nonlinear propagation equation gives

,cIAo12 = la"I/ro .

This gives an equation for IA0 Iro in terms of the fiber parameters. With
r, _ (27r/A)n2/Aeff, we find the energy 2IA0I2ro = 2.2 pJ.

10.2 From (10.20) we find

_ 4e `t/2 [cosh(3x) + 3 cosh x ei4t]
u(x, t)

cosh(4x) + 4 cosh(2x) + 3 cos(4t)

Att=0,

u(x,t = 0) =
4[cosh(3x) + 3 cosh x]

cosh(4x) + 4 cosh(2x) + 3

Using the relation

cosh(3x) = 4 cosh3 x - 3 cosh x

and

cosh(4x) = 2 cosh2 (2x) - 1 = 8 cosh4 (x) - 8 cosh 2 (x) + 1 ,

we find

u(x,t = 0) = 2
cosh x

From the first equation it is clear that the envelope of this second-order soliton
has a period that is eight times shorter than the distance within which the
fundamental soliton experiences a phase change of 2ir.

10.7 The lumped loss introduces a lumped (delta-function-like) source into
the perturbation equation. The perturbation term is symmetric and real. The
only parameter affected is the amplitude. We have

/AfA(t) = -(1 - L )Re I FOO dt f A(t)usI .

The amplitude equation (10.30) acquires the source term

SA(z) = -8(z)2(1 -,C) .





11. Phase-Sensitive Amplification
and Squeezing

Thus far we have discussed phase-insensitive systems, whose response is in-
dependent of the phase of the input (initial) excitation. When discussing
the example of an amplifier, we assumed that the gain medium was either
not saturated or, if saturated, was equilibrated fast enough that the gain
was insensitive to the phase of the saturating signal. We also studied a laser
resonator below threshold in Chap. 6, in which saturation effects could be
neglected.

The response of a nonlinear system is, in general, phase-sensitive. When
the gain medium of a laser oscillator saturates, fluctuations of the field in
phase with the oscillating field change the power level of the signal and af-
fect the gain saturation. The component of the fluctuation in quadrature to
the oscillating field does not change the power to first order and thus does
not saturate the gain. The response of the laser to in-phase fluctuations is
different from the response to quadrature fluctuations. In this chapter we
start with a simple model of a nonlinearity, a medium whose polarization is
proportional to the square of the electric field. We consider parametric am-
plification. Parametric amplification provides gain by variation of a circuit
parameter, such as capacitance or inductance. This is the origin of the name.
If a capacitance is a function of the applied voltage, as it is for example in a
reverse-biased junction diode, the capacitance can be varied periodically at
the frequency of the applied voltage, the "pump". At optical frequencies, the
amplification is achieved by variation of the index of a nonlinear medium by
an optical "pump".

A capacitance at thermal equilibrium with its environment stores an en-
ergy of kO/2. It does not generate noise internally; the energy is acquired from
its surroundings. Hence, one would expect that parametric amplifiers would
function well as low-noise amplifiers, and they do. In fact, we shall show
that a degenerate parametric amplifier can provide, in principle, noise-free
amplification.

Degenerate parametric amplification can also be used to generate special
quantum states, so-called squeezed states. Although these quantum states
were discussed in the literature before H. Yuen's work, it was his paper [140]
and work by Braginsky [141-145] and Walls [146] that kindled the interest in
squeezed states as a means for performing measurements below the so-called
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"standard quantum limit", taken as shot noise. In this chapter we show how
degenerate parametric amplification can generate squeezed states in general,
and squeezed vacuum in particular. We then show how squeezed vacuum can
be used in an interferometric measurement of phase to lower the noise below
the shot noise level. We conclude the chapter with the discussion of a laser
above threshold. We obtain the spectrum of the laser output. This analysis
leads to the Schawlow-Townes formula for the linewidth of laser radiation.
Finally, we show under what conditions the laser can emit squeezed radiation.

11.1 Classical Analysis of Parametric Amplification

A laser with gain requires the introduction of noise sources to conserve com-
mutators, since the presence of gain implies coupling to a reservoir. The
consequence is that the equations of motion are not derivable from a Hamil-
tonian. Parametric amplification can occur without coupling to a reservoir
and hence is, ideally, governed by a set of equations that are derivable from a
Hamiltonian. We analyze first a traveling-wave parametric amplifier and then
develop the multiport scattering formalism for parametric amplification.

A parametric amplifier contains a nonlinear medium. The medium is ex-
cited by a pump at the frequency wp. The pump modulates the parameters

Fig. 11.1. Traveling-wave transmission line parametric amplifier with reverse-
biased diodes as variable capacitors

dichroic mirrors

crystal with X (2)

Fig. 11.2. An optical parametric amplifier
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of the structure. In a transmission line, this could be the capacitance of
the line. In a practical realization of such a traveling-wave transmission line
parametric amplifier, the line could be loaded by nonlinear diodes (varac-
tors) whose capacitances then vary at the frequency wp (Fig. 11.1). In an
optical waveguide, the index may vary with time (Fig. 11.2). In either case,
a voltage or electric field of amplitude a9 at the signal frequency ws produces
new frequency components at wp + ws and wp - ws. By proper design of the
structure, namely the choice of resonance frequencies in a resonant enclosure
or the choice of proper dispersion (frequency dependence of the propagation
constant), one may ensure that only the frequency wp - ws is excited. This is
the so-called idler frequency. The amount of idler field ai produced per unit
length is given by a simple perturbation of the idler propagation equation:

d
ai = i/3 ai - il£ipsapas

dzz

The coupling is proportional to the amplitude of the pump. Note that the
signal amplitude appears complex-conjugated because the product of the
two time dependences exp(-iwpt) of the pump amplitude and exp(iwst) of
the complex conjugate of the signal amplitude results in the time dependence
exp [-i(wp - ws)t] = exp(-iwit) of the idler. Equation (11.1) also reveals the
nature of the nonlinearity used to generate the difference frequency. Two
fields beat so as to produce a polarization in the medium at the difference
frequency, the idler frequency, which then acts as the source of the idler field.
The polarization is due to the product of two fields. If the polarization is
written as a Taylor expansion in powers of the field,

R = Ej + (11.2)

where the coefficients are tensors of progressively higher rank, then the term
in this expansion responsible for the coupling term in (11.1) is clearly the
second term in the expansion, the second-order nonlinearity. We shall not be
concerned about the details of the evaluation of the coupling term xi;k from
the constitutive law (11.2) and the geometry, referring the interested reader
to the literature [31, 36] instead.

Analogously, we find the equation for the signal as

d as = i/3sas - ir,spiapai
dz

(11.3)

The coefficients dips and Kspi are related. This was first proven by Manley
and Rowe [147], who derived the so called Manley-Rowe relations, using clas-
sical arguments. Later it was shown by Weiss [148] that the Manley-Rowe
relations are a consequence of simple quantum mechanical energy conserva-
tion arguments. Let us use here the quantum argument of Weiss. Note the
energy diagram of Fig. 11.3. The pump photon of energy hwp produces one
signal photon and one idler photon, conserving energy in the process, since
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t-P
KOs

1

Fig. 11.3. Energy diagram for parametric amplification

hwp = hws + hwi . (11.4)

Hence, the number of signal photons generated per unit length must be equal
to the number of idler photons per unit length:

__ 2
(11.51 las1 2 = 1

d
fail )hws dz hwi dz

When (11.1) and (11.3) are used in (11.5), we find

Kip, Kspi

Wi - ws
or

Wi
tips - /_ /Gspi .

Wi V Ws
(11.6)

Next, consider the spatial dependence of the signal and idler dictated by
(11.1) and (11.3). In an optical system, the pump is usually a traveling wave
as well, with the spatial dependence

ap(z) = Ap exp(i/3pz) . (11.7)

If one neglects pump depletion, AP can be treated as a constant. Since the nat-
ural spatial dependences of the signal and idler are exp(i/3ix) and exp(i/33x),
respectively, the coupling gets out of phase rapidly as one proceeds along the
waveguide, unless

OP = /3s + A (11.8)

This is the condition of phase matching. It is accomplished in practice by
proper choice of the waveguide dispersion or of the birefringence of the non-
linear crystals employed in a parametric amplifier. Equation (11.8) is also
known as the momentum conservation condition, since quantum mechani-
cally the momentum of a photon is known to be 1,/3. Thus, not surprisingly,
in the photon-scattering picture, energy and momentum must be conserved.

Let us now return to the differential equations. Setting as (x) = As (x)
exp(i/33x) and ai(x) = Ai(x) exp(i/3ix), taking advantage of (11.6), and noting
that the complex conjugate of the idler wave couples to the signal wave, we
obtain the two coupled differential equations
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d AS _ wilcspiAp Ai
dz ws

-1
ws wi

'

d Ai wilcspiAp As=i
dz wi ws ws

383

(11.9)

Consider a system of length L, excited by a signal of amplitude As (0) and
an idler of amplitude Ai(0) at the input at z = 0. Set i w/wsnspiAp =
-i ws/wirespiA* = y with y real and positive for simplicity, by choice of the
definition of the phase of the pump. Then the output is

A, (L)
ws I

- sinh(yL) cosh(-yL)

L

A%(L)

wi J

The signal grows exponentially along with the idler. The energy required for
the growth is provided by the pump.

11.2 Quantum Analysis of Parametric Amplification

The quantum analysis of wavepacket propagation along a parametrically ex-
cited system proceeds in the time domain. We start with a Hermitian coupling
Hamiltonian of the form

ft = h (Xspiasapai + xspiaiaPas )

We use the same normalization for the creation and annihilation operators as
in Chap. 6 for linear phase-insensitive amplification. The equations of motion
for the signal and idler operators are

das
d = -iXspiapa , (11.13)

daz
a a

= i
11 14p s .%spi

dt
( . )

When the pump is very intense and its depletion can be ignored, we may
replace the pump operator ap with a c-number amplitude Ap. Then, the
quantum form of the equations is in close analogy with the classical equations
of motion. Note that no normalizing factors involving the square root of the
idler and signal frequencies appear in the quantum version. This is because
the expectation values of the operator products represent photon numbers,

cosh(yL) - sinh(yL)
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not power as is the case for products of the classical amplitudes. The quantum
form of the equations ensures automatically photon number generation or
annihilation in pairs.

Integration of the equations over an interaction time T, cast into a
scattering-matrix form by defining the output operators

t i [ai(T)J
in terms of the input operators

&,]= el'(0) ,

[at [at (0)]

gives

r 1 r 1

b- [61 I =S Lat] =S&, (11.15)
a

with the scattering

i

matrix

cosh(8T) - sinh(8T) (11.16)

[ - sinh(8T) cosh(8T)

where we have set 8 = iXsp:Ap and assumed that 8 is real and positive. The
analogy with the classical result is unmistakable. Note that the scattering
formalism (11.15) does not involve an internal noise source, because com-
mutators are preserved in a system described by a simple Hamiltonian (as
opposed to a system whose Hamiltonian contains coupling to resonator modes
that do not appear explicitly in the final scattering-matrix representation of
the system).

The scattering formalism of a parametric amplifier does not contain noise
sources. Yet the amplifier provides gain. Is the gain then noise-free? The
answer is no as we shall now show. Let us ask about the signal photons in
the output when there is zero signal input, a situation analogous to a linear
amplifier, which emits amplified spontaneous emission at its output when
there is no input. The photon number in the signal channel is

(0s 1(Oi Ias (T)a3(T)I0a)10s)

_ (0sl(OzI

x {cosh2(8T)&s(0)&s(0) - cosh(8T)sinh(8T)[&3(0)&i(0) + &9(0)&1(0)]

+ sinh2(8T)d;,(0)at (0)}j0i) 1O8)

zl A ,= sinh2(8T) ()=(G_1)
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where G = cosh2 (ST) is the gain of the system. We get the same formula
for the photons at the output of a parametric amplifier as we have for a
linear amplifier with complete inversion. In the parametric-amplifier case, the
output photons are due to the zero-point fluctuations of the idler channel,
which stimulate pump photons to break into signal and idler photon pairs.

Note that the scattering matrix S of (11.16) is not unitary. The reason for
this is that it does not describe a system which conserves photon number, but
rather a system that generates photons in pairs. If one were to assign to the
photon number in the idler channel a negative value, then the sum of these
"negative" idler photons and positive signal photons would be conserved.
Formally, we may express this conservation law by defining the parity matrix
P,

01
, (11.18)P = 110-1

and the associated photon number operator,

photon number operator = btPb . (11.19)

Then we may confirm that the sum of the photon numbers thus defined is
conserved:

btPb = at StPSa = atPa, (11.20)

since the matrix S of (2.5) obeys the condition

SIPS = P. (11.21)

Of course, commutators are preserved as well. This is a direct consequence
of the derivation of the equations of motion from a Hamiltonian. It is infor-
mative to see how commutator conservation follows from commutator matrix
manipulation. First of all, the commutator matrix of the signal-idler column
matrices must be written:

[b, bt] = [a, at] = P , (11.22)

since the idler operator is entered into the column matrix as a creation op-
erator, and not an annihilation operator. Direct manipulation yields

[b, bt] = [Sa, atst] = S[a, at]St = SPSt = P, (11.23)

where we have used the fact that (11.21) implies as well the relation

SPSt = P P. (11.24)

The assignment of a negative sign to the idler photons, so as to ensure
conservation of photon number, has an analogy in plasma physics and mi-
crowave electron beam amplifiers. Waves traveling in a moving plasma or an
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electron beam may be assigned positive or negative energies depending upon
whether their excitation raises or lowers the translational kinetic energy of
the plasma or the electron beam. This property is basic to L. J. Chu's small-
signal kinetic power theorem [149]. Coupling of a wave with positive energy
to one with negative energy leads to exponential growth of both waves. En-
ergy is conserved since the positive-energy wave grows at the same rate as the
negative-energy wave, the sum of their energies remaining zero. Even more
generally, the analogy extends to the evolution of the universe from an ini-
tial vacuum fluctuation via the "big bang". Gravitational energy is negative,
radiational and particle energies are positive. The universe is, in the words
of Alan Guth, "the ultimate free lunch" : it was generated from zero energy
and even today has zero net energy [150].

11.3 The Nondegenerate Parametric Amplifier
as a Model of a Linear Phase-Insensitive Amplifier

A parametric amplifier is called nondegenerate when the signal and idler
frequencies are different. This was the case analyzed in the preceding sec-
tion. The amplification was provided by pump photons that split into signal
photons and idler photons. Signal and idler photons are generated in pairs.
We have set up a formal photon conservation law by assigning a negative
sign to the idler photon number; then the sum of signal and idler photons is
conserved. The signal and idler photon numbers can increase exponentially.

If no attention is paid to the details of the amplification process, and one
considers only the signal excitation, one arrives at the equation

bs = vGas + ns (11.25)

with VG = cosh(ST), and ns = -sinh(ST)az.
The parametric-amplifier model developed here is indistinguishable in its

operation from a linear amplifier. The noise source is caused by the idler, and
the commutation relation for the noise source is the one required to maintain
the commutator of the signal operator:

[,h,, ns] = sinh2(ST)[ai, &,j] _ -sinh2(ST) (1 - G)
w

. (11.26)
27r 27r

The parametric-amplifier equations follow from a Hamiltonian description.
On the other hand, the laser amplifier equations can be derived from Hamil-
tonians for the field and for the gain medium. Many approximations have to
be made in the analysis of the medium before the complete description of
the gain process is cast into that of a linear amplifier. The noise source arises
from the quantum fluctuations in the gain medium. Yet, when all is said and
done, and the transfer function of the system is a linear relation between
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input and output, the commutator of the signal must be preserved, since the
commutator is an attribute of the signal wave. Therefore, the commutator of
the noise source is fixed by very fundamental physical considerations.

Whereas the commutator of the noise source must have a prescribed value,
the nature of the noise operator, as a single creation operator or a superposi-
tion of creation and annihilation operators, depends on the physical situation.
We modeled the case of a partially inverted laser medium as a combination
of gain and loss media. As a result, we obtained a noise source composed
of annihilation and creation operators. The case of the parametric amplifier
gave us a noise source consisting of a creation operator only. This is the ideal
case of a lossless parametric amplifier. When loss is present, additional noise
sources have to be introduced. However, the net commutator must still obey
the relationship

[ns, ns] _ (1 - G)
AW

, (11.27)

where G is the net gain.
It is possible to derive the equations of an active N-port and the com-

mutators of the noise sources from a parametric 2N-port, where N ports
are excited at the signal frequency and N ports at the idler frequency. By
suppressing all references to the idler ports, one obtains the scattering ma-
trix of an N-port with associated noise sources. The noise sources have the
same commutators as those obtained from the requirement of commutator
conservation. The details are shown in Appendix A.M.

11.4 Classical Analysis
of Degenerate Parametric Amplifier

A parametric amplifier is called degenerate when the signal and idler fre-
quencies coincide. The pump photons split into two photons of equal energy.
Then, the signal and idler occupy the same frequency band. They must be
distinguished, however, because they still represent two electric fields that
are differently phased. We may replace the subscript "i" with the subscript
"s", but we must treat A,, and A* as independent excitations that couple to
each other. In analogy with (11.9) and (11.10), we have

A= -i 11 28)
dz c rGSPS P w , ( .

d *
s = ir,* A* S (11.29)

dz cvs
SP, P W9

Set iksPSAP = 'Yew' with ry real and positive. Then integration of these equa-
tions over a distance of propagation L gives
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_ cosh(yL) - sinh(yL)ei"'
- sinh(yL)e-iV' cosh(yL)

(11.30)

These equations look very similar to (11.11) for the nondegenerate ampli-
fier. One must note, however, one very important difference: the excitations
As (0) and As (0) lie in the same frequency band and thus determine jointly
the input signal excitation.

The physics of the degenerate parametric amplifier is brought out more
explicitly if we revert to canonical, decoupled variables in (11.28) and (11.29).
We define

A(1) - 2 (Ase-iG/2 + AsetiiP/2) and 3 - 22 Asei'G/2)

(11.31)

Note that 1, can be made equal to zero by proper choice of the pump phase.
Then the definition of the canonical variables is particularly simple. We can
write (11.28) and (11.29) in terms of the canonical variables:

d Asl) Asl)

'
(11.32)

dz Ws

d Ase)
= y

VI(A); s

Ase)
(11.33)

dz Ws Ws

These equations predict exponential spatial growth of Ase) and exponen-
tial decay of Asl). The two excitations are clearly 90° out of phase. The
solution of (11.32) and (11.33) is

Asl)(L)
f

Asl)(0)
Ws l reXp(-yL)

0 1 I Ws I

Ase) (L) L
0 exp(7L) I A(2)

((0)
Ws

(11.34)

Degenerate parametric amplification is, in fact, a well-known physical
phenomenon. A child on a swing can amplify the motion of the swing by
pumping it at twice the frequency of the resonance of the pendulum formed
by the child on the swing. The child can also bring the swing to a stop,
without touching the ground, by changing the phase with which it pumps
the swing relative to the phase of the motion of the swing.
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Fig. 11.4. An electrical degenerate parametric amplifier

t

There also exists a very simple electrical model of the degenerate para-
metric amplifier, shown in Fig. 11.4. It is an L-C circuit whose capacitance
varies with time. Such a time dependence could be produced mechanically by
varying the plate spacing of a capacitor, or electrically by a time-dependent
voltage applied to a nonlinear capacitor. For simplicity, we assume that the
time dependence of the capacitance is square-wave-like and in synchronism
with the voltage-current excitation in the circuit. Suppose the capacitance is
decreased mechanically; the capacitor plates are pulled apart at the instant
of time when the voltage across the capacitance is a maximum. Work is being
done against the attractive force between the capacitor plates. Suppose the
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capacitance varies between C1 and C2 as shown. The voltage increases at
constant charge (no current can flow through the inductor if the motion is
very fast). The energy Cv2/2 of the increased voltage and decreased capaci-
tance is raised by the factor Cl/C2. This energy is transferred to the inductor
energy Li2 /2. The current increases in the ratio Cl1C2. When the voltage
across the capacitor is zero, the plates are pushed back, and no work is done.
One full cycle results in the growth of both the peak voltage and the peak
current amplitudes by the factor Cl /C2. A pump drive of opposite phase
causes decay of the excitation in the L-C circuit. When the ratio VC1 /Cis
only slightly greater than unity, the growth becomes exponential with time.
Also, one may disregard the slight change in the period of the L-C circuit
and make the time intervals of the two half cycles of the pump equal to each
other.

11.5 Quantum Analysis
of Degenerate Parametric Amplifier

It is not difficult to develop a quantum description of the degenerate para-
metric amplifier in the time domain. We start with a Hermitian Hamiltonian
of the form

ft
2

(XSPSAsAPAs + x: AsAPA8) (11.35)

where we use the normalization of creation and annihilation operators with
the standard commutation relation [A, At] = 1. The coefficient Xsps has units
different from those of the coefficients Xspi of (11.12). The Heisenberg equa-
tions of motion lead to the coupled equations

cit
= -iXspsAPA (11.36)

dt s

dAs
= iXspsAPAs (11.37)

Note that the Heisenberg equations of motion quite naturally dictate the
coupled evolution of the operators AS and At. When the pump is very intense
and its depletion can be ignored, one may replace the pump operator Al, with
a c-number amplitude A. Integration of the equations over an interaction
time T, cast into a scattering-matrix form by defining the output operators

bs = As (T)

L Bs J L As (7')

in terms of the input operators
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A

tJ[A
gives

[ t

[As (0)J

S [
'

11.38)
fa

with the

At j

scattering matrix

S= [U µ, (11 39),* .

where we have set ix5p5Ap = Se'lp, p = cosh(ST), and v = - sinh(ST)e''fi.
Note that the operator f3,, is related to the operators AS and As by the
transformation

B8=µA8+vA8 with lµ12-lv12=1. (11.40)

This is a so-called Bogolyubov transformation. The in-phase and quadrature
field operators have been defined in Chap. 6. Using these definitions, and
setting z/i = 0 by proper choice of the pump phase, we find

As ')(T) _ exp(-ST) 0 As')(0)
As (0)2) (T) - [ 0 exp(ST) j A(2)

The analogy with the classical result is unmistakable. One component of the
electric field grows, the other decays. Suppose we have an input in the state
1a). The expectation values of the amplitude are

(alAs')(T)la)

(alA(.2) (T)la)

exp(-ST) 2 (a + a*)

exp(ST)1 (a - a*)

The mean square fluctuations of the output state are

(adAsl) (T)2la) - (aiAsl) (T) (a)2

(alAs2)(T)2la) - (ajAs2)(T)Ia)2]

exp(-28T) ((alAsl) (0)2 1a) - (a1A81)
(0) la)2/

exp(29T) ((alAs2)(0)21a) - (aiAs2)(0)la)2/

(11.42)

(11.43)

1 1exp(-2M

4 exp(2ST)
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AI2)

20

Fig. 11.5. Initial and final Wigner distribution of degenerately amplified signal.
Initial phasor at 45°; in-phase component at 90°, quadrature component at 00

Phasor plane

vacuum

degenerate amplified
vacuum

Fig. 11.6. Vacuum and squeezed vacuum

The quadrature component has an exponentally larger fluctuation; the
fluctuation of the in-phase component is exponentially smaller. Figure 11.5
illustrates the phasor diagrams at the input and output. The signal has been
amplified and attenuated depending upon its relative phase. The diagram il-
lustrates what is known as a squeezed state. It has an amplitude that exhibits
fluctuations with a two-dimensional Gaussian distribution, with its root mean
square fluctuations lying on an ellipse. The state has four free parameters.
One is the amplitude; the second is the phase of the phasor. The third is the
angle of the major axis of the fluctuation ellipse with respect to the phasor.
The fourth parameter is the ratio exp(26T) of the major and minor axes. Note
that the product of the axes remains 1/4. Squeezed vacuum has no phasor
and is illustrated in Fig. 11.6. It is described by two parameters, Ii I and the
orientation of the ellipse with respect to the real axis. The distribution of the
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phasor endpoints is a two-dimensional Gaussian. Appendix A.17 goes into
further details on two-dimensional Gaussian probability distributions.

11.6 Squeezed Vacuum and Its Homodyne Detection

Degenerate parametric amplification is phase-sensitive; the signal component
with the proper phase relative to the pump experiences gain, the component
in quadrature experiences loss. If no signal is fed into the amplifier, the ouput
is so-called "squeezed vacuum". Even though the word "Vacuum" seems to
imply only zero-point fluctuation energy and the absence of photons, the
fact is that squeezed vacuum contains photons and produces current in a
photodetector. In this section we look at the nature of squeezed vacuum in
greater detail.

Squeezed vacuum is described by the Bogolyubov transformation

B=pA+vAt,
where y and v obey the constraint

µI2-Iui2=1,

and where the expectation values of A satisfy the vacuum conditions

(11.44)

(11.45)

(IA2I) = (IA12I) = (AtA) = 0 and (AAt) = 1. (11.46)

Condition (11.46) shows that no photons have been fed into the input of the
parametric amplifier when squeezed vacuum is generated. However, squeezed
vacuum contains photons which are derived from the pump in the parametric
amplification process. Indeed, if we ask for the photon number of the output
(nsq. vac) using (11.46), we find

(Bt B) _ (nsq. vac) = (I(p*At + v*A)(pA + vAt)I) = Ivl2 . (11.47)

Thus squeezed vacuum contains photons; it contains more photons the greater
the degree of squeezing and the more elongated the ellipse in the phasor plane.

Next let us study the measurement of squeezed vacuum via homodyne
detection. We assume a standard balanced detector arrangement as shown
in Fig. 11.7. We linearize the formalism, treating the local oscillator as a
classical variable. The current operator is given by (compare (8.30))

i = -igv9 L (a4B - aLBt) . (11.48)

The expectation value of i is zero.The expectation value of the square of the
current operator is given by
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Fig. 11.7. Balanced detector

(Z2) = gzvg Lz [_(a* )zµv - (aL)zµ*v* + IaLIz(Iµlz + Ivlz)]
(11.49)

= 4zvy
IaL2Iz

(-2IµvI cos + Iµlz + Ivlz)

where = arg(aL) - arg(µv). The mean square fluctuations vary from
z

(22) = gzvy
I LLZI

(IµI - IvI)z (11.50a)

to
z

(i2) = g2vy
I

LzI (IµI + (VI)2 , (11.50b)

depending upon the phase between the local oscillator and the squeezed vac-
uum. The shot noise level corresponds to IµI = 1 and v = 0. The fluctuations
(11.50a) can be written in terms of the number of photons in the squeezed
vacuum. Indeed, from (11.45) we have IµI = N/1+ Ivi2, and thus (11.50a)
can be written

)=(i z q zv9IL12 (1+2 IvIZ + 2IvI l + vz) (11.51)

It is of interest to cast the last expression into the familiar shot noise form so
that we gain a direct comparison. The expectation values have been obtained
for a mode in the interval ,AO = L/27r. Thus, if we ask for the fluctuations
in a frequency band Lw = (dw/d,3)43 = v927r/L, we write for the
right-hand side of (11.51)

(22) = g2v9 (L) (1+2 IV12 2IvI 1 + Ivlz)zAw/27r
L (11.52)

= gIL(1 + 2IvIz + 2IvI ++ Ivi2)B ,
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where IL = gv9Ic Lj2/L is the current induced by the local oscillator, and B
is the bandwidth.

When the squeezing is strong and jvj is very large, we find for the two
extrema

(z2) . 1 gILB4(nsq. vac)

and

(22) 4(nsq. vac)qILB

(11.53a)

(11.53b)

Several observations are in order. First of all, in the absence of squeezing,
i.e. v = 0, (11.42) gives half the shot noise value. This is the consequence
of homodyne detection, detection of a signal of the same frequency as the
local oscillator. In this case, the idler merges with the signal and the zero-
point fluctuations of the "idler" become part of the signal fluctuation. As
the squeezing increases, the square root of the product of the maximum and
minimum fluctuations remains at half the shot noise value, as can be seen
from (11.50a) with ,i'2 - jvj2 = 1. The value of the squeezed fluctuations is
inversely proportional to the photon number of the squeezed radiation.

11.7 Phase Measurement with Squeezed Vacuum

We now determine the signal-to-noise ratio in a measurement of an inter-
ferometric phase with homodyne detection using squeezed vacuum as shown
in Fig. 11.8. A Mach-Zehnder interferometer is unbalanced by small phase
shifts of AO/2 in one arm and -.&P/2 in the other arm. Into the input port
(a) is fed a probe wave in a coherent state. The local oscillator in the bal-
anced detector is also supplied by the same coherent-state source. Squeezed
vacuum enters the vacuum port (b). In order to understand how this excita-
tion can be accomplished experimentally, we look at the arrangement of Fig.
11.9, which gives the details of the generation of the different excitations. One
starts with a single-frequency source (ideally in a coherent state) and splits
off one part to serve as a probe and local oscillator, and another part which is
frequency-doubled and serves as the pump for a degenerate parametric am-
plifier. Only by deriving the fields from one common source can one ensure
coherence among the squeezed vacuum, probe, and local oscillator.

Returning to the measurement setup of Fig. 11.8, we now follow the evolu-
tion of the operators as they pass through the interferometer and the balanced
detector. Owing to the interferometer imbalance the output from port (d) is
composed of a signal part and the contributions from the squeezed vacuum
port:

D=ilsin1 ,i(
+

E) . (11.54)
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squeezed vacuum

Fig. 11.8. Measurement of phase shift 14

The balanced-detector charge operator is

-iq(aL1D - aLDt) . (11.55)

The probe A is in the state Ian); the input f3 is in a squeezed state. The
signal produces an output

(Qs)
=2gIaLIIapI (11.56)

where = arg(aL) - arg(ap). In order to maximize the response one adjusts
the probe phase with respect to the local-oscillator phase so that = 0 or
+7f. The noise is due to the squeezed-vacuum fluctuations and the noise of
the probe, with an amplitude proportional to LW for small values of Z. If
we ignore signal-dependent noise, then the contribution of the probe can be
neglected and the cosine of acP can be set to one:

(Q2)
= 42(IaLI2(BtB + BBt) - aL B2 - aLBt2)

= g2IaLI2[I/ti2 + IVI2 - 2Ipvl cos(] ,

(11.57)

where = arg(aL) - arg(pv). Clearly, the noise is minimized when the phase
of the squeezed vacuum is adjusted so that 0 = 0. The optimum signal-to-
noise ratio is
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Fig. 11.9. The generation of the different excitations in the measurement of phase

S z (np)
(11.58)N =

(iii - Jvj)2

The signal-to-noise ratio is proportional to the number of probe photons and
inversely proportional to (j tj - Iui)2. If we express the denominator in terms
of the photon number of the squeezed vacuum, in the limit of large squeezing
we find

N = vac)2 . (11.59)

The signal-to-noise ratio is proportional to the square of the photon number
in the squeezed vacuum.

This simple example shows how squeezed vacuum can be used in an in-
terferometer to obtain signal-to-noise ratios below the shot noise limit. Here
we have studied generation of squeezed vacuum with a X(2) process (second-
order nonlinearity), which uses a pump at twice the signal frequency. In the
next chapter we shall show how squeezed vacuum can be generated with
a third-order nonlinearity. In such a process the pump can be at the sig-
nal wavelength. Further, an optical fiber can serve as a convenient nonlinear
propagation medium, providing a guide that confines the radiation to a small
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cross section over long propagation distances in which the cumulative non-
linear effects can be made large.

11.8 The Laser Resonator Above Threshold

In Chap. 6, we analyzed a resonator with loss containing a gain medium, using
the requirement of commutator conservation. This requirement gave us the
commutators of the noise sources. The assumption that the noise sources were
in their ground states gave us the mean square fluctuations of the resonator
output. The system was linear and phase-insensitive. As the gain approached
full compensation of the loss, the output approached infinity. We pointed out
that this limit is not reached, because of gain saturation. Gain saturation
occurs when the rate of depletion of the inversion of the laser medium by
the radiation approaches the rate of replenishment of the inversion by the
pumping mechanism. We start with the analysis of gain saturation.

The laser gain is provided by a medium with two energy levels, the upper
of which is more highly occupied than the lower level. The rate of change of
the population Nv, of the upper level is

d
.Ne)S + P (11.60)

Here Qv, is the decay rate of the upper level, Ne is the population in the
lower level, S is the photon number, 'y is the gain cross section, and P is the
pumping rate. The term 'y(Nu - Ne)S is the rate of depletion of the upper
level, which is proportional to the product of the population difference and
the photon number. The gain action lifts the population in the lower level
into the upper level and also depletes the upper level. The rate equation for
the lower level is

dtNe = -aeNe+'y(NN -N1)S. (11.61)

In the steady state, the rates of change are zero, and we find from (11.60)
and (11.61)

P/QuNu-Ne= 1+'y(1/au+1/0e)S (11.62)

The population inversion is proportional to the pumping rate and decreases
with increasing photon number. The rate at which photons are generated is

rate of photon generation = ry(Nu - Ne)S = 7P/UU S.I+ry(1/Qu+1/0e)S
(11.63)
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The rate of photon generation is proportional to the energy growth rate due
to gain, 2/Tg, as defined earlier in the treatment of the resonator. We may
write

2 ryP 1 _ 2 1

Tg Qu 1+ry(1/Uu+1/at)S T9 1+S/Ssat

where

S_ =
1

(11.64)

at
-Y (1/0,u + Vat)

is the so-called saturation photon number; it is the number of photons that
reduces the gain to half its value. The unsaturated value of the gain corre-
sponds to the small-signal growth rate 2/T9 , where

2 ryP

T9 Qu
(11.65)

The rate of growth changes with changes of the photon number density. These
changes can cause noise. If the fluctuations of S are small we may write

S=So+,AS, (11.66)

and the growth rate expanded to first order in LXS is

2 2 1 2 1 'AS
(11.67)

Tg Tg 1 + So/Ssat Tg (1 + So/Ssat)2 Ssat

Fluctuations of the photon number can induce fluctuations of the growth
rate. The analysis thus far has been classical. Quantum equations are ob-
tained when the complex c-number amplitudes are replaced by annihilation
operators of the electric field and noise sources are introduced that ensure
conservation of commutators. The equation of the resonator introduced in
Chap. 6 reads

d 1 1 1
dU

(,wo+T +T -T )
U+V T a+e

To g T.
(11.68)

where we combine in N all the noise sources associated with loss and gain.
The laser saturation introduces a new aspect into the equation. The rate
of growth due to the gain itself experiences fluctuations in response to the
fluctuations of the mode amplitude. Further, the responses to the in-phase
and quadrature components of the mode field are different. In anticipation of
the separation of the equations into in-phase and quadrature components, we
remove the natural time dependence by the replacement U -* U exp(-iwot)
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(without change of notation!) and do the same with the operators a and 1V.
We express the mode amplitude operator as the sum of a (classical) c-number
amplitude and an operator perturbation:

U=Uo+zU.

The photon number operator is, to first order,

UtU = IUo12+QUU: +LUtU0 .

(11.69)

(11.70)

This operator is identified with the c number S = S° + L S. When this is
done we obtain equations of motion for the c number U°:

dU°_ 1 1 1 1

dt Te + T. T9 1 + I Uo I2 / Ssat
U.

Here we have omitted the noise source, since it drives the perturbation op-
erator, and the incident wave, since it is assumed to be unexcited except, of
course, for its zero-point fluctuations, which drive the perturbation opera-
tor AU. In the steady state, the amplitude has to remain constant and the
growth and decay rates must balance. This serves to determine the steady-
state amplitude:

IU°IZ Tg - 1
(11.72)

Ssat 1 /Te + 1/To

Threshold is reached when the unsaturated gain, represented by the growth
rate 1/Ty, becomes equal to the decay rate 1/Te + 1/T°. The equation of
motion for the perturbation operator LU becomes

dU=-\TaTILU
\ e g

- 1 1 IU°IZ (DUt + AU)
Tg (1 + IUoI2/Ssat)2 Ssat

+Ta+N,
VVVVVV Te

(11.73)

where we have assumed that the phase of U. is zero. The operator AO couples
to its Hermitian conjugate. This is an indication of a phase-sensitive process.

In order to solve (11.73) we introduce in-phase and quadrature compo-
nents

,A00) = 2 ('AU + DUt), iI(2) - 2i (DU - z1Ut) . (11.74)
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In the steady state

1 1 1-+---=0.
Te To Tg

We then find

dQU(l)
+ T ail) +

s e

and

d,60 (2) _
dt

2 a(2) + N(2)
Te

where we have defined

2 1 IU0I2 _ 1

T9 (1 + IUoI2/'ssat)2 Ssat Ts .

Equations (11.75) and (11.76) assign

401

(11.75)

(11.76)

(11.77)

different time dependences to the
in-phase and quadrature components. This is a novel situation that requires
closer scrutiny. In order to investigate this case we generalize to the situation
in which the in-phase and quadrature components have decay rates 'Yl and
rye [151,152):

d
AU(1> = - N(1)

,

(11.78)
dt'AU(2) -.Y2QU(2) + N(2)

The commutator of the noise source and the expectation values of its moments
are obtained in a sequence of steps. We first look at the commutator of the
observables DU(1) (t) and'AU(2) (t):

[zU(1) (t), AU(2) (t) I = 2

From (11.78) we obtain for the rate of change:

dt
(t), oU(2 (t)1

_ -(71 +'Y2) [aU(1)(t),oU(2)(t) + [aU(1)(t),N(2i(t)]

+ [N(1) (t), oU(2) (t)] = 0.

(11.79)

(11.80)
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Within the time interval at, the excitations AU(1) (t) and DU(2) (t) acquire
contributions (1/2)At N(1)(t) and (1/2).At N(2)(t), respectively, from the
noise sources. Thus, one finds from (11.80)

-(71 + 72) [zUlll (t), th(2) (t)] +22 At [N(1) (t), N(2) (t)] = 0,

(11.81)

from which we infer

[N(1) (t), (t')] = 2
(71 + 72)a(t - t') . (11.82)

One may construct an annihilation operator from the in-phase and quadra-
ture noise operators

1V(t) = 1V(1) (t) + iN(2)(t) . (11.83)

Its commutator with the Hermitian conjugate creation operator is

[N(t), Nt(t')] = (71 +-y2)S(t - t') . (11.84)

The commutator of a pair of operators assigns a minimum uncertainty
to the product of the mean square fluctuations of the observables, but does
not put limits on the mean square value of the fluctuations of either of the
two observables. However, if the noise source equilibrates rapidly compared
with the characteristic times of the system, the noise should be stationary
and phase-insensitive, and the mean square fluctuations of the in-phase and
quadrature components have to be equal:

(I(N'1))2I) = (I(T 2))2I) (11.85)

We must remember that the noise source N(t) is constructed from a sum of
annihilation and creation operators. Whereas the contributions to the com-
mutator of the creation and annihilation operators are of opposite signs, their
contributions add in the mean square fluctuations. Specifically, in the case of
the laser oscillator,

71 = 1 and 72 = 0 . (11.86)
Ts

The question then arises of how the mean square fluctuations are to be as-
signed to the individual noise sources. The noise source associated with the
loss has the usual autocorrelation function

(INoll(t)Nol'(t')I) _ (INo2)(t)1Vo2>(t')I = 4 - (t - t') . (11.87)

The noise source assigned to the gain represents the ASE of the inverted
medium. When the relaxation rate of the lower level of the gain medium is
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very fast, Qt/Q, -i oo, the lower level remains unoccupied. Then the mean
square fluctuations of the noise source are

(I Nyl,(t)N91'(t')I) = (I N9(2)(t)N9(2) (t1)I) = 4 T5(t - t') . (11.88)
9

As saturation sets in, the commutator of the noise source associated with
the gain medium changes. The commutator by itself sets only the minimum
value of the product of the mean square fluctuations of the in-phase and
quadrature components. Stationarity sets the two fluctuations equal. But
the question remains as to how large the actual fluctuations are. We shall
use two models in the remainder of this discussion. The simplest model is
one in which the noise contributed by the gain medium is assumed to be
independent of the degree of saturation and given by (11.88). This is in spite
of the fact that the commutator of the gain medium has to accommodate the
saturation-induced rate of decay of an amplitude perturbation, 1/Ts. One may
imagine that saturation is accompanied by a buildup of the lower level, which
contributes noise of its own so as to offset the decrease of the magnitude of the
commutator of N9. We call this model "model I". We shall also consider the
case of minimum noise, "model IF, in which a single noise source is assigned
to the gain medium, a creation operator with the commutator

[N9(t),N9(t')] = -(T s)b(t-t') . (11.89)
9

As the decay rate 1/7-S increases, the commutator of the gain medium de-
creases in magnitude. In the limit of very strong saturation, the gain medium
becomes noise-free. This is an interesting model of the laser, which will be
discussed in greater detail in Sect. 11.11.

11.9 The Fluctuations of the Photon Number

Equations (11.78) are particularly suitable for an initial-value problem. The
evolution in time can also model an evolution in space of a wavepacket that
travels with the group velocity v9, covering the distance L = v9T in the
time interval T. Linear differential equations are solved in the time domain
by superposition of their impulse responses. Denote the impulse responses of
(11.78) by hl(t) and h2(t). Then

J
dt' hi(t - t')Niil (t'), where i=1,2. (11.90)

The commutator evolves according to
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[DU(1) (t) ,A&(2) (t')]

= J dt" J dt" h1 (t - t")h2(t' - t")[I (1)(t") I (2)(t")]

=
2

(y1 + y2) dt" dt hi(t - t )h2(t t)s(t t'll
)

(11.91)

= 2('Y1+72) fdt"hi(t-t")h2(t'-t").

When we introduce the specific impulse response functions, we find that the
commutator is a function of the time difference t - t', i.e. is stationary, and
has the value

2 exp[-yi(t - t')] for t > t'

exp[-y2(t' - t)] for t < t' .

(11.92)

The excitation in the resonator "remembers" its drive. The memory dies out
at the decay rate of the in-phase component for t > t', and at the decay rate
of the quadrature component for t < t'.

The commutator at equal times, t = t', is 1/2 as it should be. Con-
sider next the expectation value of the product of the perturbation operators
zU(1)(t) and zU(2)(t') of the fluctuations in the resonator:

(oU(i) (t),AU(t) (t'))

= J dt" hi(t - t") I dtiii hi(t' - t'")(II (t")N(i)(tm)I )

2= 4f dt"hi(t-t")
J
f dt'h,i(t'_t'/')

(Te
+T +(t"_g

of

=
4

{
2 + T + 2 } f dt" hi(t - t")hi(t' - t")

` e g To

(11.93)

With the expression for the in-phase impulse response, we find for the auto-
correlation of the in-phase component

a
(oU(1)(t)aU(1)(t')) + (ou(1)(t')oU(1)(t)>

11.94)
_ 1 2 2 2 Ts

(

T+ T + T 2
exp (_It_t'l'\T

e g o s
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Setting t = t', one obtains the mean square fluctuations. It is of interest to
note that these become smaller and smaller the higher the degree of satura-
tion. In the ideal limit of a very high degree of saturation, 1/Ty 2/Tg, and
for negligible internal loss, Te/To -+ 0, the mean square fluctuations approach
1/4. This is the value for the field fluctuations of a Poissonian photon number
distribution.

The relaxation rate of the quadrature component is zero, the relaxation
time infinite. Equation (11.93) applied to the case of an infinite relaxation
time gives infinity. How does one obtain physically meaningful information
in this case? First of all we note that the derivation of (11.94) assumed a
stationary steady state; the limit in the integral over the impulse response
went from -oo to +oo. When the relaxation rate goes to zero, an infinite
disturbance builds up. Now, our linearization approximation assumed that
the perturbations LU(t) are small compared with Uo. This assumption does
not permit arbitrarily large perturbations. However, the situation changes
if one defines the phase operator L 9 = AU(2) /U,,. The linearization is still
valid if the changes of phase are small within any given finite time interval.
Further, the phase can grow without bound, whereas the quadrature com-
ponent referred to an unchanging phasor cannot. It is in this spirit that the
quadrature fluctuations have to be interpreted, namely as phase fluctuations.

The autocorrelation of the phase is

2
(L O(t')z B(t))]

2I 1

I2
[(aU(2) (t)QU(2) (t')) + pU(2)(t1)Q6,(2)(t))]U0

(11.95)

For the evaluation of the laser linewidth, we shall be interested in the mean
square value of the phase difference at two times, (1',A0 (t) - 'A8(t +,r) 12). One

simple way is to introduce a finite relaxation time, use an expression of the
form of (11.94) for the correlation function, and then go to the limit of an
infinite relaxation time. The infinities cancel and one finds

(k O(t) - ,A6 (t +T)I2)

_ (a62(t)) + (,A62(t +T)) - (ae(t)L O(t +T)) - (ae(t +T)DO(t))

1 Te T. ITI

2U 1+T +T ToI2 g o e

(11.96)

The spectrum of the amplitude fluctuations is obtained by Fourier trans-
formation of the autocorrelation function:
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1

27r
f d-r exp(1WT)

2
(t + T)) + (QU(1)(t + T)QU(1)(t))]

1 1 2 2 2 2r
27r4(Te +T9 +Tp)W2Ts +1

(11.97)

The spectrum of the phase fluctuations requires greater care. Since the re-
laxation time of the phase is infinite, the mean square phase fluctuations
increase with time; the process is not stationary. A nonstationary process
does not allow for the simple Fourier transform relation between autocorre-
lation function and spectrum. Yet there is an aspect of stationarity in the
phase diffusion process: starting with a particular phase 9(t) at a time t, the
phase at some later time walks away from the initial value in the same way,
independent of the starting time. This aspect justifies the step which we now
undertake. We use the expression for the autocorrelation function of the am-
plitude and take the limit of Ty -* oc. In this way we obtain for the spectrum
of the phase

27r J
d-r exp(iwr) 2

1
+T)) + (A6(t +T)QB(t))]

1 2 2
+

2 1+--
27r 21 U, 12 Te Tg To W 2

(11.98)

This is the spectrum of a random walk. It has a singularity at the origin.

11.10 The Schawlow-Townes Linewidth

The spectrum of the radiation in the laser can be evaluated from the autocor-
relation function of the time-dependent field amplitude U. + LU. We follow
here the standard classical analysis for the evaluation of the spectrum of an
oscillator [153]:

U(t) = [U0 +,AU(t)] cos[(wot +

2
[U0 + AU(t)]{exp[i(w,,t + a9(t))] + exp[-i(wot + L 9(t))]}

(11.99)

1

Its autocorrelation function is
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(U(t)U(t +T))

=

4

[Uo + (oU(t)oU(t +,r))]
(11.100)

x {(exp[i(a9(t) - L O(t + T))]) exp(iw0-r)

+(exp[-i(.,A9(t) - LO(t+T))])exp(-iw0T)} .

Since the in-phase and quadrature fluctuations are independent, the expec-
tation value of the product is equal to the product of the expectation values.
The exponentials are related to the characteristic function

CB (s) = 9(t) - LO(t +T)]}) (11.101)

of the phase change aO(t) - z G(t + T). The phase distribution is Gaussian,
and thus we know that CB(c), the Fourier transform of the probability dis-
tribution, is also Gaussian:

Co(d) = eXp
(_,20

2 /
(11.102)

where the mean square deviation has been evaluated in (11.96) Thus, we
obtain for the autocorrelation function

(U(t)U(t + T))

2
[Uo + (QU(t)QU(t + T))] exp L-(1 +

T e4U2 eT
e/To)I T I cos(woT) .

L o

(11.103)

The spectrum is the Fourier transform of the autocorrelation function. Since
the autocorrelation function is a product of the autocorrelations of the am-
plitude and carrier, the spectrum is the convolution of the respective spectra.
The evaluation of the spectrum of (11.103) is left as an exercise. Here we con-
centrate on the spectrum of the carrier, which is the dominant contribution
to the lineshape:

I j dT exp(iwT) exp I -(1 + Te4U2
eT e/T o)I T I

cos(w0T)
o

27r'AS? [(w-wo)2+aQ2 + (w+wo)2+,AQ2]

where

n - 1 + Te / T9 + Te /To
4Uo Te

(11.104)

(11.105)
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is the so called Schawlow-Townes linewidth. This linewidth is, generally, very
small since it is inversely proportional to the photon number in the cavity
and the external Q of the resonator. Jaseja et al. attempted to measure it
on a He-Ne laser early after its invention [154], to no avail. The thermal
vibrations of the rods supporting the laser cavity broadened the line much
beyond the value of (11.105). This gave the impetus to C. Freed and the
author to measure spontaneous-emission effects in the amplitude noise near
threshold, where these effects emerge above the background of environmen-
tally produced fluctuations [155]. Later, after the invention of the semicon-
ductor laser, in which the Q is much lower and the photon number in the
resonator is much smaller, Freed was able to observe the quantum limit set
by (11.105) [156,157].

11.11 Squeezed Radiation from an Ideal Laser

The study of a laser above threshold on the basis of model I, in which the noise
generated by the gain medium was assumed independent of the saturation
level, showed that the lowest fluctuations internal to the laser were those of
a Poisson process. Model II, in which it is assumed that the noise of the
gain decreases with increasing degree of saturation, can give sub-Poisonian
outputs as we now show. For this purpose it is necessary to study the radiation
emitted by the laser as represented by the operator 6. We use the resonator-
waveguide coupling equation (6.161)

b=-a+rrle_U. 11.106)(

When the excitation in the resonator is linearized, the incident wave a acts
as a noise source. The outgoing wave consists of two parts: (a) the outgoing,
c-number, steady-state laser signal 21TU,,, and (b) the fluctuation oper-
ator 66. Thus, the linearized form of (11.106), separated into in-phase and
quadrature components, is

bl'1 = -affil +
V

i = 1, 2 .
Te

(11.107)

The commutator of the resonator mode has an exponential time dependence.
On the other hand, the wave ab represents a wave on an open waveguide
and thus has a prescribed commutator

(t), ab(2) (t')] = 2 6(t - t') . (11.108)

Let us determine the mean square fluctuations of the output wave. Con-
sider We have
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(,Abii) (t),AO) (t'))

_ (aM(t)a()(t')) - T [(a()(t)aUW (t')) + (o(J()(t)&()(t'))]

+ (,AU(i) (t)AU(i)(t')), i = 1,2
Te

(11.109)

There is partial cancellation between the term in brackets and the last term.
The response of ,A&M to the source aM is given by (11.90). Thus

2(oU(i)(t)a(Y)(t'))
Tee

= T dt" hilt - t")(alil (t")a(i) (t'))
4 e

f dt" hi(t - t")S(t" - t')

4 T
hilt - t') for t > t'

e

0, for t < t'

Similarly

1 2hi(t' - t) ; for t < t'
T (a(i) (t')) = 4 -r,

0 for t>t'.

(11.110)

(11.111)

Finally, using (11.93) with the noise of model II, we may write down the
expectation value of 60) (t) : ab(i) (t')

(ab(i)(t)ib()(t'))

= 1 I S(t - t') -
2

hi(I t - t'I) + 2 (2 + 2 - 1 + 2) (11.112)4 L Te Te \ Te Ty Ts To

x f dt" hi(t - t")hi(t' - t")] .

When this expression is applied to the in-phase and quadrature components,
we find along the lines of the analysis in Sect. 11.9, the autocorrelation func-
tion of the in-phase component of the outgoing wave as
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Fig. 11.10. The fluctuation spectra of the in-phase and quadrature components

2 (zAb(') (t)z (1) (t') + L ' (t')ab(1)(t))

=

4

[ot_t'+--T
(2/Te+2/rgl/Ts+2/ro

T-11exp ItTt'Ie2

/s s /J
(11.113)

The quadrature component is

2 (Ab(2) (t)ab(2) (t') + £(2)

tis = 1.5tie

Ts = Te

H
2 2 2 1 2\ 1

T +T t
4 +Te Te +Tg

fr

s o

4 L(S(t - t') +
T (T + Tg Te s + To ) t/j

for t < t' (11.114)

for t' <t

The spectra can be obtained analogously to the analysis in Sect. 11.9:
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Fig. 11.11. The product of the spectra of the in-phase and quadrature components

_ 1 1 r 2 (2/Te+2/r_1/Ts+2/ro -) 2T3 1

Ob(l) (w)
27r 4 1 + Te 2/r3 1 w2,rs + 1 J

(11.115)

Ob(2) (w)
27r

4 [i+2(i+T.T2T + TwT] .
(11.116)

9 s o/ e

In the ideal limit of strong saturation, when 2/T9 = 2/Te = 1/Ts, and
when the loss is negligible, the spectrum of the in-phase component vanishes
at zero frequency. This corresponds to perfect amplitude squeezing. The am-
plitude squeezing is at the expense of the phase, whose spectrum diverges
at the origin of the frequency. Figure 11.10 shows the two spectra for differ-
ent values of saturation, in the ideal limit of zero loss. When 1/Ts = 2/T9,
the amplitude fluctuations near zero frequency go to zero, indicating per-
fect amplitude squeezing. Fig. 11.11 shows the square root of the product of
the two spectra. As we may see, the product never dips below the minimum
uncertainty value of 1/87r, as is required by the uncertainty principle.

The preceding analysis is an idealized model of the amplitude squeezed
radiation observed by Yamamoto and Machida [158]. They employed a semi-
conductor laser, current-excited through a high series resistance. The high
resistance reduces the current fluctuations below the shot noise level and
thus the carrier injection into the laser becomes sub-Poissonian. If the prob-
ability of induced emission is very high, then the sub-Poissonian character of
the injection current manifests itself in a sub-Poissonian photon emission. In
the limit of zero current fluctuations, the squeezing would become perfect.
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11.12 Summary

Phase-sensitive amplification leads to different fluctuation spectra of the com-
ponents in phase and in quadrature with a pump. In the case of the parametric
amplifier, the pump is at a frequency different from the signal frequency. In
the case of the laser above threshold the role of the pump is played by the
c.w. signal amplitude of the oscillator.

Parametric amplifiers are special cases of multiports described by a scat-
tering equation that does not contain noise sources. This does not mean that
noise-free amplification can be achieved with a parametric amplifier. The
output noise is generated from the zero-point fluctuations of the idler input.

We found it convenient to assign negative photon numbers to the idler and
positive photon numbers to the signal. In this way a conservation principle
of photon number was obtained. This situation is analogous to a widely used
formalism in plasma physics in which growing and decaying wave solutions
are ascribed to coupling of waves with positive and negative effective energies.
In plasma physics, a negative energy is assigned to an excitation of an electron
or ion beam when the kinetic energy is reduced by the excitation. Thus, this
assignment is a matter of convenience. There is one physical situation in which
negative energy has an unequivocal meaning. The theory of the evolution of
the universe after the big bang is, in fact, based on the recognition of the
negative energy of gravity. As matter evolves from vacuum, the negative
energy of the gravitational field balances the positive energy of everything
else. Thus the evolution of the universe is, in the words of Alan Guth, "the
ultimate free lunch".

We found that degenerate parametric amplification produces squeezed
states. We analyzed the fluctuations of the current in a balanced detector
illuminated with squeezed vacuum. Finally, we showed how squeezed vacuum
can be used to improve the signal-to-noise ratio of an interferometric phase
measurement.

It is of interest to note that the equations for the mechanical degenerate
parametric amplifier, the pumped capacitor in an L-C circuit, are identical
with the equations for the optically pumped degenerate parametric amplifier.
Clearly, the mechanical pumping can be replaced by electric pumping of a
varactor amplifier, in which the width of the depletion region of a reverse-
biased junction is changed by an applied voltage. Conversely, the role of the
optical pump in the variation of the dielectric constant could be taken over
by a distribution of Maxwell demons moving the atoms of the medium back
and forth and producing index variations in this manner. Even though this
appears to be an extreme version of a "Gedankenexperiment", it is useful to
pursue some of its consequences. Instead of the atoms in the medium being
moved, the perfectly reflecting walls of the resonator could be moved back and
forth. This is equivalent to the variation of the capacitor in the L-C circuit
example. In the absence of an optical excitation, the motion of the atoms or
the walls affects only the zero-point fluctuations within the optical resonator.
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The analysis shows that photons are generated in a degenerate parametric
amplifier without any initial (input) photons. Thus, photons are generated
from vacuum when the boundary conditions of the zero-point fluctuations
are changed in a way that involves acceleration. (Uniform motion of a mirror
Doppler-shifts the frequency of an incident photon flow, but does not generate
new photons.)

We developed two models for the laser gain. One led to fluctuations of
the laser output in excess of the zero-point fluctuations. The other, ideal
model was constructed from the postulate that the noise should be as small
as was compatible with the requirement of commutator conservation. This
latter model gave a laser that emits amplitude-squeezed radiation.

Problems

11.1* Squeezed vacuum with the parameters µ and v passes through a 50/50
beam splitter. The second port is excited by regular vacuum.

(a) Find the major and minor axes of the uncertainty ellipses of the electric
field in the two output ports.

(b) If the input is perfectly squeezed, i.e. Jyj -4 no, determine the major and
minor axes of the uncertainty ellipses.

11.2* The saturation analysis of Sect. 11.8 permits the evaluation of the
noise enhancement factor X = N,,/(N,, - NQ). Obtain an expression in terms
of the medium parameters and the photon number.

11.3 Rederive the Schawlow-Townes linewidth of Sect. 11.10 for the ideal
laser of Sect. 11.11.

11.4* Set up the Hamiltonian and the Heisenberg equations of motion for
parametric upconversion. In the upconversion process, a pump photon at
frequency wp combines with a signal photon to yield a photon at the so-
called anti-Stokes frequency Wa: Wa = WP + Ws.

(a) Derive the equation of photon conservation.
(b) Find a general solution to the equation of motion assuming that the signal

is small and the pump amplitude can be treated as a time independent
c number.

11.5 Consider the classical equations of a resonator with two resonant
modes, of frequencies Wos and Woi and decay rates 1/r,,3 and A pump
UP exp(-iwpt) is applied and produces sources in the equations for the two
modes, KspiUpUi* exp[-i(Wp - Wi)t] and Kip,UpUs exp[-i(wp - W3)t], respec-
tively. Normalize the amplitudes so that their squares are photon numbers.

(a) From photon number conservation, write down the relation between the
coefficients Kspi and Kips.
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(b) For the source 2/Tess from an input port at frequency w9 I, wog, derive
the excitations of the signal and idler. Assume that the idler is not coupled
to the output port.

(c) Plot Te/21U3/s12 versus aw Tos = (ws - wos)TO3 under the assumption
that wog + woi = wp, 'ros = Toi, and I/6spiUpI2Tos = 0.25.

11.6 The rate of growth of the mechanical parametric circuit was obtained
for abrupt, step pumping. Show that, in the limit of small steps, we may
obtain the same rate of growth with sinusoidal pumping, the amplitude of
the sinusoidal variation of the capacitor being equal to the first harmonic of
the Fourier expansion of the step excitation. Write C = Co[1 + Msin(wpt)]
and retain only terms of frequency ws = wp/2.

11.7 Consider a degenerate parametric amplifier, neglecting pump depletion.
Its Hamiltonian is then (compare 11.35)

,A*A,A,,H = h(XSp8ApAsAs + X*SP P

with AP a constant. The interaction time is T. With vacuum as input, show
that the photons are emitted in pairs by looking at the wave function I'(T)).
You need not find the actual probability distribution.

11.8 Evaluate the spectrum of the autocorrelation function (11.103).

Solutions

11.1 Denote the outputs of the beam splitter as C and D. Then

C = [(µA + vAt) - iB] , 13 = [-i(CA + vAt) + B] .

We find for the in-phase and quadrature components of C

Ci = 8(C+Ct)

= 2(µA+µ*At +vA+v*At - iB+iBt) .

The expectation value of Cl is obtained by putting the resulting expression
into normal order and noting that (IAtAI) = (IBtBI) = 0. In this way, we
obtain:

8(IµI2+Iv12+µv+µv*+1)
.

In a similar way we find for the expectation value of the square of the quadra-
ture component

(Ic21) =
1 (Iµ12 + Iv12 - µv - µ*v* + 1) .
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If we phaseshift the components C1 and C2 so as to maximize one and mini-
mize the other, we find for this new reference phase

11(1[11
±

Ivi)2 + 1] .

These are the major and minor axes of the squeezing ellipse. If the squeezing
is perfect, and Iµi - Ivj -3 0, we find that the noise reduction in the output
is only 3 dB.

A completely analogous derivation finds the same major and minor axes
of the squeezing ellipse in port (d).

11.2 The two rate equations are

dNu
dt

--or uNu-ry(Nu,-Nt)S+P,

dN1

dt
=-vtNe+ry(Nu-Ne)S.

In the steady state d/dt = 0, and we find

P/Qu
NN - Ne=

and

1 + 'y(1/0'u + 1/oe)S

C i"\ P/auNu = 1 + at
S

1 + y(1/Qu + 1/at)S

Thus we find

Nu =1+ 'YS.X Nu - Nt
Qe

The noise enhancement factor approaches the ideal value of unity when the
relaxation rate of the lower level is much faster than the induced transition
rate of the upper level.

11.4 The Hamiltonian is of the time-independent form

H = hXpsaApAsAa + H.c. .

The Heisenberg equations of motion are

d As = h
[H, As] _ -ixPsaAPAa ,

dt Aa = [H, Aa] _ -iXpsaApA3 .

These two equations imply conservation of photon number, i.e. a Stokes pho-
ton is exchanged for an anti-Stokes photon and vice versa.

dt
(A5A3) + d (AaAa) = 0
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The equations can be integrated, when linearized by replacing the pump
amplitude by a time-independent c number. We find

A, (t) = cos(tt)Ae(0) +e"1'sin(kt)Aa(0) ,

A,, (t) = cos(nt)Aa(0) - e-"Osin(Kt)A8(0)

where # = IXp8aAPI and 1i = arg(-iXp3QAp).
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In the preceding chapter we showed how degenerate parametric amplification
can lead to squeezing. Further, we gave an example of how squeezed vacuum,
in conjunction with a coherent probe, can be used to improve the sensitivity
of an interferometric measurement. In order to provide coherence between the
probe and the squeezed vacuum, the pump radiation, at twice the frequency
of the probe, had to be generated in a doubling crystal, coherently with the
probe. The experiment is not a simple one; in particular, since coherence must
be maintained across the entire experimental setup, changes in the different
optical paths must be kept much smaller than an optical wavelength. It is
difficult to maintain this coherence in adverse environmental conditions. For
this reason one may look for methods of squeezing that are less subject to
environmental effects. This can be done with fibers that possess the Kerr
nonlinearity.

The optical version of parametric amplification uses a nonlinear medium
with a second-order nonlinearity. This nonlinearity occurs only in crystals
with no inversion symmetry. Indeed, a quadratic response to an electric field
is produced only when reversal of the field does not result in a reversal of
the response, i.e. the polarization. The medium must not be invariant under
the symmetry operation of inversion. Media with inversion symmetry have
no second-order nonlinearity; their lowest-order nonlinearity is of third order.
The material of silica fibers is isotropic and thus its lowest-order nonlinearity
is of third order. A third-order nonlinearity produces a polarization density
according to the law

Pz(w) = EoXijkl (w )Ek(w )Et(w ) with w = w w - w (12.1)

The complex conjugates are placed so that the response is at and near the
fundamental, rather than the third harmonic. There is, of course, some third-
harmonic generation in a fiber that shows the Kerr effect. However, it is not
phase-matched and is thus of neglible magnitude compared with the funda-
mental, which is automatically phase-matched when w" = w'" = w' = w,
and close to phase-matched for the range of frequencies encompassed by a
pulse containing many cycles. The third-order nonlinearity is described by
a third-rank tensor. However, usually, a much simpler description is satis-
factory. Clearly, the generation of a polarization, in addition to the linear
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response and at the same frequency, can be represented by a change of the
index proportional to the intensity. This is the common way of describing the
optical Kerr effect. As in Sect. 10.1, we write for the index

n= no+n21, (12.2)

where n2 is the nonlinear index coefficient. A pump of significant intensity
changes the index of a fiber. In the process phase shifts of the field are pro-
duced. These phase shifts can generate squeezed radiation. Note that no
frequency doubling is involved, the pump can be "recycled" as the local os-
cillator.

The Kerr effect is one of the phenomena of four-wave mixing. Indeed, as
(12.1) shows, the beating of three fields produces a polarization source at
a fourth frequency. In the quantum description, the three modes that mix
are expressed as three waves with three propagation constants. Either clas-
sically or quantum mechanically, a superposition over all frequencies leads
to a polarization written as the convolution of three spectra. Classically, an
inverse Fourier transformation into the time domain transforms the convo-
lution into a product of time functions. Quantum mechanically, an inverse
Fourier transformation puts the convolution into product form, a product of
three functions of space, of the x coordinate. We start with a careful study
of the Fourier transforms of operators. Then we set up the quantum form of
the Kerr effect. The theory is applied to the generation of squeezed vacuum
in a nonlinear Mach-Zehnder interferometer under the action of the Kerr
effect. The Mach-Zehnder interferometer is replaced by a Sagnac fiber loop
reflector, which performs the same function as the Mach-Zehnder interferom-
eter but which is self-stabilized against changes of index in the interferometer
due to environmental effects that are slow compared with the transit time
through the loop. We present experiments that have demonstrated appre-
ciable amounts of squeezing and shot noise reduction. We conclude with an
experiment that demonstrated measurement of the phase of an interferometer
at a level below the shot noise level by the injection of squeezed vacuum.

12.1 Quantization of Nonlinear Waveguide

The modes of an optical fiber were derived in Chap. 3. The quantization of the
electromagnetic field in a waveguide or a fiber has been treated in Sect. 6.3. In
a single-mode fiber, modes of two polarizations have to be distinguished, and
to each of the modes of a particular polarization creation and annihilation
operators are assigned. The evolution of the complex field amplitude operator
in time is described by the Heisenberg equation of motion. A forward wave
"packet" is selected, occupying a length L (taken as very long so that the wave
can be considered monochromatic), and its propagation in time is followed.
This wave travels forward at the group velocity and occupies different spatial
regions as it proceeds.
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The complex field amplitude is proportional to the photon annihilation
operator a(/3). The operator at(/3) is a creation operator, the Hermitian con-
jugate operator to a(0). The following commutation relation holds:

[a(a), at ()3')l = 1 8(3 - (12.3)

The Hamiltonian of the mode is

ft = 2lrh J
d6w(Q)at((3)a( 3) . (12.4)

Using the Heisenberg equation and the commutator relation (12.1), we find
the equation of motion for the operator as

d -iw(/3)a(13) (12.5)

In order to treat the Kerr nonlinearity in the simplest possible manner, it
is necessary to introduce operators that are functions of the Fourier transform
variable x. The Kerr effect was described classically in Chap. 10 as a process
of four-wave mixing. Three Fourier components of the field at frequencies w,
w', and w" produce a fourth one at frequency w"' = w' + w" - w. The Kerr
effect was written as a convolution of these three Fourier spectra.

In the quantum description, the evolution of the operators of given prop-
agation constant(s) is a function of time. The four-wave mixing process is
described in terms of a convolution of operator amplitude spectra of the
propagation constant, rather than the frequency. If the medium is dispersion-
free, as we shall assume to be the case, then the energy conservation relation
hw"' = hw' + hw" - hw also implies the momentum conservation condition
7,,3"' = 7i/3' + 71/3" obeyed by the propagation constants. The Kerr effect can
be described by the interaction Hamiltonian HK:

ftK = -22irKJ d,3 f d,3' f d3"at(3)at(Q')a(Q")a(/3+/3'

(12.6)

Note the minus sign in front of the integral. The energy associated with the
Kerr effect is negative. In the dispersion-free case, this Hamiltonian is time-
independent, as it should be. Since the commutator of the operator a(/3"')
with the interaction Hamiltonian is

[ftK, a(/3"')] = 1Kf d/' f d/3"at 0' - 0") ,

the Heisenberg equation of motion is now

(12.7)

dta(,3) = -iwa(3) + iK f d/3' f d/3' at(Q')a(C3")a(/3 + Q' - (3") . (12.8)
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The Kerr effect is expressed as a convolution. Just as in the classical case, it is
convenient to Fourier transform the operators so as to convert the convolution
into a product. The Fourier transform is now with respect to the propagation
constant, and not the frequency. The Fourier transform is expressed as a
function of position x, rather than time t. We call this the x representation.
The next two sections are devoted to the discusion of the x representation of
operators.

12.2 The x Representation of Operators

A general spatial dependence can be built up from a superposition of modes.
Optical systems transmit radiation that possesses a carrier frequency w, and
a carrier wavelength ,Qo, and can be of very short duration, i.e. pulse-like.
Even so, the pulse contains many cycles and can be still considered narrow-
band, except in the case of ultrashort pulses containing only very few cycles
[159-161]. Such ultrashort pulses can only propagate undistorted in free space
or through very thin slabs of materials, not in optical fibers. In the quantum
analysis to follow, we exclude such extremely short pulses. Pulses containing
many optical cycles can be treated within the slowly-varying-envelope ap-
proximation (SVEA). It should be noted further that annihilation operators
have the time variation exp(-iwt), with w > 0, and thus only excitations of
positive 0 are represented in the following equations. The derivations will be
more transparent if we use the mode amplitude operators A,,,,, rather than
the operators a()3). The two are connected by the simple renormalization
(6.94). Consider the following superposition of mode operators:

1Q0x'A"" = A ' a'-x- A e
me m,

7m VIL- m (12.9)

=

The inverse transform is
L/2

A,,, = 1 dx a(x)e-' 60-X
,

J
(12.10)

L/2NIL

where 3,, + 8/3m = ,3m. The photon operator, expressed in terms of a(x) and
at (x), is

L/2

J-L/2

L/2
Am = J

dxdx'a(x)a(x')exp[ib/3m(x-x')]A

L/2

- L/2
dx at (x)a(x) .

(12.11)
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The last expression is valid if L is chosen large enough compared with the
spatial extent of the wavepacket. This expression suggests that the operator
at (x)a(x) can be interpreted as a photon number density operator. Normally
we think of photons as monochromatic, namely pertaining to wave packets
of length so long that the excitation has a well-defined propagation constant
and frequency. By extending the photon concept to a length smaller than
L, one stretches the interpretation of photons beyond their usual definition,
they cannot be considered to possess a sharply defined frequency. Just how
the length L is chosen, and the local operator a(x) defined, depends on the
measurement apparatus. This will emerge in the discussion of specific mea-
surements.

The photon flow rate is

photon flow rate = vyat(x)a(x) .

The commutator of the operators a(x) and at(x') is

[a(x), at (x')] = L exp[i(o/m x - 8/3n x')] [Am, At,]
m,n

1 / /
L exp[i(Jom x - a/3 x')]Jmn

m,n

1 exp[i b/3m(x - x')]
L m

d&/3 exp[i b/3(x - x')]
2-7r _o

(12.12)

(12.13)

_ sin[L\(x - x')] A
,A (x-x') '7r

where the spectrum of the propagation constant has been assumed to extend
from 30 - to /30 + A. The commutator is a Nyquist function. Thus the
photons are localized to a spatial interval determined by the spectral width
of the spectrum in /3 space. If the Nyquist function appears in an expression
involving functions of much slower x variation, one may replace the Nyquist
function by a delta function:

sin[4(x - x')] L 4 b(x - x,

)a(x-x') it

Its Fourier transform gives a flat spectrum up to its cutoff at L. In this
notation, we have for the commutator

[a(x), at(x')] = 5(x - X') . (12.15)
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The transformation of the states by a Fourier transform is discussed in Ap-
pendix A.18.

The preceding discussion shows the analogy between a Fourier transform
and a physical transformation of a column matrix of operators by propagation
through a conservative system. One physical process that takes a Fourier
transform is the process of diffraction through a lens, for which the field at
the second focus is the Fourier transform of the field at the first focus. This
same mechanism can be implemented in a fiber with dispersion, with the lens
replaced by an appropriate phase-shifting filter.

12.3 The Quantized Equation of Motion
of the Kerr Effect in the x Representation

The transformation into the x representation was carried out with the opera-
tors A,,. for clarity. In particular, it was noted that the mode spectrum clus-
ters around the average propagation constant /30. The dependence exp(i/3,,x)
was explicitly factored out from the x-dependent envelope. The transforma-
tion was written in terms of the deviation 6/3 of the propagation constant /3
from /3,. The discrete spectrum of A,,,, called for a discrete Fourier transform.
This notation is somewhat cumbersome. To simplify notation, we shall hence-
forth replace the summations by integrals. We shall use the renormalization
(6.94), and use the operator a(6/3). In effect we have defined a new operator
function a(/3) -4 a(6/3) exp(i/3,,x). This redefinition changes the equation of
motion (12.5). The equation of motion for a(b/3) is

dta(b/3) _ -i(wo + vyb/3)d(b6) (12.16)

where v9 = dw/d/3 is the group velocity. This equation simplifies when the
time dependence exp(-iwot) is removed; a(8/3) a(6/3) exp(-iwot). We shall
make this substitution, again without a change of notation. The operator
a(6/3) then functions as an envelope function, which has to be multiplied by
exp(-iw,,t + i/3ox) in order to obtain the actual space-time dependence. We
shall simplify the notation by dropping the b from the propagation-constant
difference 6/3 by the replacement 6/3 -> /3. The spectrum of a(/3) is now
positioned at and around /3 = 0. We shall also dispense with the distinction
between the Nyquist function (12.14) and the delta function, under the stipu-
lation that we are dealing with pulses that possess a bandwidth L (measured
in the propagation-constant coordinate) much larger than the quantization
interval 27r/L. With this simplification in notation we may treat a(x) and
a(/3) as Fourier transform pairs

a(x) = 2-
J

d/a(x)e-'0x (12.17)
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with the inverse Fourier transform

a(/3) = fdxa(x)eI. (12.18)

The operators a(x) and at (x) obey the commutation relation

[a(x), at(x')] = 8(x - x') . (12.19)

The integral in (12.17) extends over positive and negative values of 0 since /3
now represents the deviation of the propagation constant from /30. In conso-
nance with the replacement of the Nyquist function with the delta function,
the limits of the integral are extended to -oo and +oo. In this way the
correspondence with Fourier integral theory is made complete. In this new
notation, (12.16) assumes the form

dta(/3) _ -i/3vya(/3) (12.20)

or, if Fourier transformed,

ata(x) = -vgaxa(x) (12.21)

This equation is the quantum version of the classical propagation equation
for the mode envelope. It is the Heisenberg equation of motion of a system
with the Hamiltonian

ft = 1 ihv9 J
dx [ (a x)) a(x) - at (x) 12a ] (12.22)

Indeed, use of the commutator (12.15) and integration by parts leads to
(12.21). Note that the kernel of the Hamiltonian is reminiscent of the current
operator in second quantization.

Next we turn to the x representation of the Kerr effect. The convolution
(12.6) is transformed into products:

_ h K f r f

HK 2 (27x)3 f d/3 J d/3' J d/3" J dx (x)

x f dx'e'A'x'at(x')
J

dx"e-')3"x" a(x") (12.23)

x f dx111e-i(A+p'-'3")X,,,a(xi")
.

The integrals over the /3s can be transformed piecewise into delta functions:
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f d,3
eipxe_hfx,,, = 21r6(x - x"'

d,3,e"3,x,e_'Q,x,,, = 27r6(x' - x...
J

x ,
= 27r5(xt' - ")

The Hamiltonian simplifies to a single integral and becomes

HK = -h K
J dx at (x)at (x)a(x)a(x) . (12.24)

This is expressed in terms of a Hamiltonian density integrated over all x. The
total Hamiltonian is the combination of (12.22) and (12.24):

H= 2ihv9J dx[\aa(x)/a(x)-at(x)(a(ax))]

-h

2
fdxat(x)at(x)a(x)a(x).

The Heisenberg equation of motion is

a
at

a(x) _ -v9 ax a(x) + iKat (x)at (x)a(x) .

(12.25)

(12.26)

Again we may simplify this equation by a change of variables that transforms
the coordinates into the frame moving with the group velocity, t -4 t - x/v9
and x -+ x. Without changing notation, we obtain

ata(x) = iKat(x)a(x)a(x) . (12.27)

It is apparent that the introduction of the operator a(x) has greatly sim-
plified the Heisenberg equation of motion involving the nonlinear Kerr effect.
Comparison of (12.27) with the classical counterpart identifies the coefficient
Kas

K = hwov,rc , (12.28)

since at(x)a(x) is the photon density operator and, classically, Ia(t)12 stands
for the intensity.

12.4 Squeezing

Radiation propagating along a fiber with a nonlinear Kerr coefficient becomes
squeezed. The locus of the e-1/2 points of the probability distribution of
the complex amplitude starts out as a circle, if the input is in a coherent
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state. The phase of an excitation of a given amplitude shifts proportionally
to the amplitude. The initial circular probability distribution can be sliced
into segments of constant amplitude. Each segment of a given amplitude
is phase-translated proportionally to the amplitude. The locus of the a-1/2
points distorts into an ellipse of the same area as the original circle. As we
shall show, this is a manifestation of squeezing.

Consider a nonlinear fiber excited initially by a coherent state. The
Heisenberg equation of motion (12.27) conserves photon number and leaves
the operator at(x)a(x) invariant, independent of t. We may integrate (12.27)
from t = 0 to t = T directly to obtain

a(T, x) = exp[iKTat (0, x)a(0, x)]a(0, x)

We may linearize (12.29) by setting

a(t, x) = a.(t, x) + da(t, x) ,

(12.29)

(12.30)

and by dropping all terms of order higher than first in da(t, x). The function
a,, (t, x) is a c number that follows the classical evolution of the complex field:

a. (T, x) = exp(if)a.(0, x) , (12.31)

with P = KIao(0, x)12T, the classical Kerr phase shift. The operator da(t, x)
acquires the commutator of a(t, x). We have

a,, (T, x) + da(T, x)

= exp{[iKT [ao(0, x) + dat (0, x)] [ao(0, x) + da(0, x)] }

x [a,,(0, x) + da(0, x)]

exp{iKT [ao(0, x)a,,(0, x) + dat (0, x)ao(0, x) + da(0, x)ao(0, x)]}

x [ao(0, x) + da(0, x)]

.: exp{iKT[a0*(0, x)ao(0, x)]}{a0(0, x) + [1 + iKTI ao(0, x)I2]da(0, x)

+iKTao(0,x)dat(O,x)} .

(12.32)

Equating zeroth-order and first-order terms, we end up with (12.31) as the
solution for ao(t, x), and with the Bogolyubov transformation for d&(0, x):

da(T, x) : exp(if) [p da(0, x) + v dat (0, x)] , (12.33)

with
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Im{a}

Re{a}

4) = mean nonlinear phase

Fig. 12.1. The 1/e loci of the distribution of endpoints in the phasor plane

p = 1 +i(, v = iOexp{2 arg[ao(0, x)]} . (12.34)

Figure 12.1 shows the evolution of the locus of the Gaussian distribution of
phasor endpoints in the complex phasor plane for a Kerr phase shift and
an initial coherent state of zero phase, arg(ao) = 0. The endpoint of the
phasor has a distribution that starts with a circular 1/e1/2 locus for T = 0
(Fig. 12.2) and distorts into an ellipse. The ellipse remains tangential to the
concentric circles drawn from the extrema of the uncertainty circle, since the
phase modulation by the Kerr effect leaves amplitudes unaffected. The area
of the ellipse remains the same as that of the circle, since the Bogolyubov
transformation preserves commutators. In the absence of noise sources, the
initial state being one of minimum uncertainty, the final state must remain a
minimum-uncertainty state. The Bogolyubov transformation is analogous to
that associated with degenerate parametric amplification. It should be noted,
however, that squeezing via degenerate parametric amplification is described
adequately by the Bogolyubov transformation for all levels of squeezing as
long as pump depletion can be neglected. The Kerr process, on the other

Fig. 12.2. A three-dimensional plot of the initial Gaussian
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hand, leaves amplitudes strictly unaffected and hence, when the locus elon-
gates so as to span an appreciable angular segment, the locus distorts into a
meniscus and the simple Bogolyubov transformation (12.33) ceases to be an
adequate description.

12.5 Generation of Squeezed Vacuum
with a Nonlinear Interferometer

Squeezing cannot be utilized for measurements with improved sensitivity un-
less the noise is separated from the pump, phase shifted, and subsequently
interfered with the pump, used as a local oscillator in a homodyne experi-
ment. This can be done with a nonlinear Mach-Zehnder interferometer (Fig.
12.3). The beam splitter is a four-port. However, if one considers only the two
incident waves in ports (1) and (4) in Fig. 7.3, and the outgoing waves in ports
(2) and (3) of the same figure, the 50/50 beam splitter can be represented by
the reduced scattering matrix

1 r1 -i
L -i 1 (12.35)

If two beam splitters are used in cascade, then the net scattering matrix for
the output is

'52

2 L ii 11] l li 11] - -i L
0

(12.36)

The output port that would be reached by two reflections in Fig. 12.3 sup-
presses the input. All of the input from port (a) goes to output port (c),
which is reached by one reflection and one transmission in each of the two
paths of the interferometer. Likewise, the input from port (b) emerges from
port (d).

When Kerr media are introduced into the two arms of the interferometer,
the fluctuations of the input in port (a) cause an imbalance of the interfer-
ometer and some of the input of port (a) appears in the output port (d).
Here we present a linearized analysis of a fiber interferometer operating at
a carrier wavelength equal to the zero-dispersion wavelength of the fiber. If
pulses are used for the excitation, as they have to be if the average power
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(d)

Fig. 12.3. Schematic of Mach-Zehnder interferometer

(b)

(a)

homodyne
detection

Fig. 12.4. The description of the phasors at different reference planes of the Mach-
Zehnder interferometer

levels are to be kept low, we can analyze the action of rectangular segments
of the pulse, each of approximately constant intensity. Figure 12.4 shows in
the insets the evolution of the phasors in the phasor plane. For simplicity, the
classical Kerr phase shift has been dropped, so that all phasors are shown
horizontal.

Now, turning to the mathematical analysis of the operation of the nonlin-
ear Mach-Zehnder interferometer of Fig. 12.4, we note that the input from
ports (a) and (b) produces the output operators 6 and d, and where
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c = (a - ib) and d = (i& + b) . (12.37)
v"2 vf2

These new operators commute, as is easily checked by evaluating the com-
mutator and by finding that it vanishes; [c, dt] = 0. This means that the
operators c and d have standard vacuum fluctuations that are uncorrelated.
The situation is analogous to the action of a beam splitter on thermal noise.
If thermal noise impinges on the two input ports of a beam splitter, the
excitations at the output ports are uncorrelated and at the thermal noise
level.

A consequence of the independence of the noise excitations in the two arms
of the interferometer is that the transformations of c and d by the Kerr media
can be treated independently. We linearize the equations by expressing the
operators as sums of c numbers and perturbation operators; c = c0 + ac , d =
d0+Ad. The transformation by a Kerr medium is described in (12.32). Using
this result, we find the operators f and g at the output ports of the Kerr
media:

f = exp(iO)(c0 + p ac + v dct) , (12.38)

g = exp(4) (d0 + p LI d + v Adt) , (12.39)

where

-P =KTIc012=KTId012=KTIa0I2/2,p=1+iW, andv=iO,

and the phase of a0 has been set equal to zero. The parameter 0 is the
classical phase shift produced by the pumps (the c-number parts of the ex-
citations) in each of the Kerr media. The outputs are superpositions of c-
number amplitudes and perturbation operators. The perturbation operators
are uncorrelated and their states are vacuum states.

Finally, consider the outputs h and k of the interferometer:

h= (g-if) and k= =(-ig+f). (12.40)

The c-number amplitudes add in the output h and cancel in the output k,
since

f0 = exp(iO)a0/V and g0 =

We obtain:

(12.41)

h = -i exp(iO)[-i(µ ac + v Lict) + (p Lid + v Adt)]

(12.42)
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72
exp(ih) [(µ zc + v zAct) - i(µ LXd + v 4dt )] . (12.43)

One of the interferometer outputs is squeezed vacuum. The other out-
put is the phase-shifted pump amplitude accompanied by squeezed vacuum.
This output can be used as the local oscillator in the balanced detector. An
adjustable phase shifter imparts a phase delay 0 to the local oscillator so
that the squeezed vacuum can be projected out along any phase direction.
The (squeezed vacuum) noise of the local oscillator cancels in the balanced
detector. The detector current autocorrelation function is

2(2(x)Z(x') + i(x2(x))

= 42v9 I Ia.I2S(x - x')(IµI2 + IVI2 - 2Ii ul COs 19) (12.44)

q2V2 1+02cos19),

where 19 = arg(p) + arg(v) - 21P. This expression, normalized to shot noise, is
plotted in Fig. 12.5 for 19 = 0 for optimum adjustment of the local oscillator
phase, and for 19 = ir. Depending upon the phase adjustments between the
local oscillator and the squeezed vacuum, the fluctuations are either below
the shot noise level by a factor (1µI - Ivl)2, or above by a factor (IµI + Ivl)2.

The analysis has shown that the action of the interferometer can be in-
ferred rather easily from the operator of the Kerr media alone. The Kerr
media generate squeezed states consisting of a classical phasor superimposed
on squeezed vacuum. The sole purpose of the interferometer is to provide one
output from which the phasor has been removed.

The preceding analysis assumed a unique phase 0 across the entire pulse,
i.e. the pulse was treated as rectangular. In practice, one uses either Gaussian

ao

Fig. 12.5. The amount of squeezing as a function of the peak Kerr phase shift



12.5 Generation of Squeezed Vacuum 431

pulses, generated from an actively mode-locked laser, or secant hyperbolic
pulses from a passively mode-locked laser. In either case, the squeezing varies
across the intensity profile of the pulse. A balanced homodyne detector ex-
cited by the pump used as a local oscillator automatically cancels the Kerr
phase factor exp(if), which determines the location of the pump phasor in the
phasor plane and also appears as a phase factor of the squeezed amplitudes.
It does not correct for the change of the orientations of the squeezing ellipses
with respect to the phasor. Hence when the degree of shot noise suppression
within an entire pulse is evaluated one must average over the orientations
of the ellipses, namely the angle t9 in (12.44). The optimum adjustment is
achieved when the local-oscillator phase is adjusted to coincide with the mi-
nor axis of the maximally squeezed ellipse at the peak of the pulse. This
means that one sets 79 = 0 at the peak of the pulse by proper choice of the
phase of the local oscillator. The phase then varies with the Gaussian pulse
profile

fi(x) = Amax exp(-x2/2xo) , (12.45)

and the phases of it and v are varied accordingly. In this manner we may
evaluate the net squeezing by averaging (12.44) The result is shown in Fig.
12.6. As one can see, a Gaussian pulse cannot produce shot noise reduction
better than 7 dB, owing to this misalignment effect.

...........................shot noise level .........................

-5

-10

-15

-20

-25

0

Gaussian pulse

1 2 3 4 5 6

Pulse peak nonlinear phase (rad)

Fig. 12.6. Noise reduction below standard noise limit (SNL) by rectangular pulse
and Gaussian pulse
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12.6 Squeezing Experiment

In the preceding section we analyzed the generation of squeezed vacuum using
a nonlinear Mach-Zehnder interferometer. If a fiber is used for the nonlinear
medium of propagation, fiber lengths of several tens of meters are required
to produce the required Kerr phase shifts for peak powers of the order of 50
W, as produced by a mode-locked laser operating at 1 GHz repetition rate.
If an interferometer were formed from two fibers of such a length, unavoid-
able environmental changes would produce large fluctuations of the relative
phase shift in the two arms of the interferometer, preventing interference at
the output mirror. In order to provide stability against such environmen-
tal fluctuations, the Mach-Zehnder interferometer was replaced by a Sagnac
loop as shown in Fig. 12.7 [162]. The incoming pump pulses are split by the
fiber coupler into two equally intense counterpropagating pulses. Within the
travel time around the loop of the order of microseconds, environmental fluc-
tuations are negligible, and the two pulses travel through identical optical
path lengths. Thus, the Sagnac loop provides an environmentally stabilized
realization of the nonlinear Mach-Zehnder interferometer if pulses are used
for the excitation. The coupler functions as both the input and the output
beam splitter of the Mach-Zehnder interferometer.

The experimental setup is shown in Fig. 12.8 [163]. The Sagnac loop
was made of a polarization-maintaining fiber and a 50/50 fiber coupler. The
pump, a mode-locked Nd:YAG laser delivering 100 ps pulses at 1.3 pm wave-
length and with a repetition rate of 100 MHz, was passed through an isolator
to reduce reflections back into the laser. The fiber had zero dispersion at a
wavelength of 1.3 um. A polarizer and a half-wave plate were used to vary
the input power level. Before entering the Sagnac loop coupler, the pump
was passed through an 85/15 beam splitter that picked off a portion of the
reflected pump for use as the local oscillator in the balanced homodyne de-
tector.

The squeezed vacuum emerges from the unexcited port; the pump pulses
are recombined and exit in the same fiber through which they entered the
interferometer. The local oscillator and squeezed vacuum are mixed in the
balanced detector. By varying the phase between the local oscillator and
the squeezed vacuum, different noise levels were observed. Figure 12.9 shows
the noise in the time domain as the phase between the local oscillator and
squeezed vacuum was varied continuously. The noise was filtered with a pass-
band filter at 50 kHz with a 2 kHz bandwidth. One sees clearly time segments
of large noise and small noise. The left trace is shot noise, obtained by block-
ing the entry of the squeezed vacuum into the balanced detector. To make sure
that the shot noise level was properly calibrated, illumination by a broadband
source was used to produce the same detector current and the noise level was
compared with that observed when the squeezed vacuum was blocked. The
two readings were in good agreement. With the phase stabilized at the min-
imum noise level, the degree of reduction of noise below the shot noise level



12.6 Squeezing Experiment 433

Fig. 12.7. Replacement of Mach-Zehnder interferometer with Sagnac loop
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Fig. 12.8. Experimental configuration
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Fig. 12.10. Spectrum of detector noise; the top trace is the shot noise

was ascertained with a spectrum analyzer as shown in Fig. 12.10. The noise
reduction measured was 5.1 dB.

12.7 Guided-Acoustic-Wave Brillouin Scattering

Guided-acoustic-wave Brillouin scattering (GAWBS) was first discovered by
Levenson et al. in their squeezing experiments with c.w. pumps [164,165].
The cause of this scattering is thermally excited acoustic modes of the fiber
near the cutoff of the acoustic modes, when they propagate nearly trans-
versely to the axis of the fiber. These are acoustic resonances of the fiber
whose frequencies are determined by the fiber stiffness and geometry. The
lowest frequency of the modes is near 10 MHz. The spectrum of these modes
extends to about 1 GHz. The acoustic waves couple to the optical waves via
the acousto-optic effect, a change of index caused by the strain produced by
the acoustic wave. At higher frequencies, the coupling to the optical mode
vanishes because their mode profile varies so rapidly over the optical-mode
profile that their coupling is negligible, and also because the acoustic prop-
agation losses become so high that their excitation becomes negligible. The
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axial component of the propagation constant of the acoustic mode is zero at
cutoff (purely transverse propagation) and remains small for small deviations
from transverse propagation. These modes can phase match an optical wave
at frequency wo and an acoustic wave at frequency Q, with the up-shifted
and down-shifted optical waves at frequencies wo ± Si. Since the acoustic
wavelength is about 105 times smaller than the optical wavelength, the phase
matching occurs only for acoustic waves that are almost entirely transverse.

GAWBS produces sidebands on the optical waves spaced by the acoustic
frequencies, ranging from 10 MHz to somewhat below 1 GHz. If squeezing
is done with a c.w. pump, and the squeezed radiation is detected in a bal-
anced homodyne detector, the spectrum of the current shows spectral spikes
at 10 MHz and higher frequencies that overwhelm the noise reduction due
to squeezing. At frequencies below 10 MHz it would be still possible to use
the squeezing for noise reduction. It turns out, however, that c.w. excita-
tion can produce stimulated Brillouin scattering (SBS) [166, 167], which is
narrow-band and thus preferentially generated by a narrow band pump. The
threshold of SBS can be increased if excitation at multiple frequencies is
employed.

Pulse excitation has a much higher SBS threshold, since it is broadband.
However, the role of GAWBS under pulsed excitation is different from that
under c.w. excitation. The pump, as well as the squeezed radiation, acquires
GAWBS spectral spikes. In balanced homodyne detection the two excitations
are multiplied in the time domain and convolved in the frequency domain.
The convolution can place spectral spikes at many combination frequencies.
Only under very fortunate conditions does one find spectral windows that
are free of the GAWBS spikes. The appearance of GAWBS spikes in the
spectrum of the detector current at frequencies of interest for sub-shot noise
measurements can be prevented by two methods [168,169]:

(a) The repetition rate of the pump source is 1 GHz or higher.
(b) The pump pulse is split into two pulses spaced by less than 1 ns apart, and

the second pulse is phase reversed when converted into the local-ocillator
excitation.

Method (a) is easily understood. If the spectrum of the pump has spec-
tral components spaced 1 GHz or more apart, the sidebands produced by
GAWBS, which occupies a spectral range of less than half the spacing, never
convolve into the low-frequency window. Moreover, the spectral spikes due to
GAWBS at 20 MHz and higher can be observed directly, without distortion
by convolution with other spikes. Figure 12.11 shows an example of such a
spectrum, achieved with a laser mode-locked at 1 GHz [170].

Method (b) relies on the fact that GAWBS is a process with typical time
constants longer than 1 ns. If two pump pulses are used, one delayed with
respect to the other by less than 1 ns, as shown in Fig. 12.12, both pulses
experience the same change of index. Thus, they carry the same GAWBS
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Fig. 12.12. Suppression of GAWBS by phase reversal of local oscillator [168]

signature. Before entering the balanced detector as the local-oscillator exci-
tation, the phase of one of the pulses is reversed. The detector integrates the
current over both pulses. The reversal of the phase of the second pulse reverses
the phase of the GAWBS excitation of the second pulse. As the currents of
the detector are added in the integration, the GAWBS excitation cancels.
The quantum fluctuations in the two time slots are uncorrelated and add in
the mean square sense. In the next section we describe a phase measurement
at a noise level below shot noise that uses this cancellation of GAWBS.

12.8 Phase Measurement Below the Shot Noise Level

The purpose of the generation of squeezed vacuum is its use in measure-
ments below the shot noise level. Quantum theory permits noise-free mea-
surements in principle. An ideal photodetector measures the photon number
of wavepackets impinging upon it in a noise-free manner. In principle, an
ideal measurement of any observable can be devised that would measure this
observable with no uncertainty. The uncertainty in the measurement would
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be attributable to the preparation of the state and not to the measurement
itself.

Lasers produce coherent states, at least in the ideal limit. Such coherent
states are minimum-uncertainty states with equal uncertainty in the in-phase
and quadrature components. Hence, they are not ideal for the measurement
of interferometric phase changes, since they are not in an eigenstate of the
observable to be measured. However, the combination of squeezed vacuum
and a coherent state fed into the two ports of an interferometer can achieve a
measurement of the phase that, in principle, could be made noise-free if the
squeezing of the vacuum were perfect. We describe such a measurement in
simple terms and then present an actual measurement of phase that employs
a modification of the setup of Fig. 12.8.

Consider the Mach-Zehnder interferometer of Fig. 12.13, which has been
unbalanced by phase changes ±L 9 in its two arms. We follow the probe ex-
citation at port (a) and the squeezed-vacuum excitation at port (b) through
the interferometer. Since the system is linear, we may analyze one excitation
at a time. The probe in a coherent state in Fig. 12.13a has associated noise,
which is scaled down by along with the amplitude of the probe. The phase
imbalance tilts the phasors so that there is an output at the port that would
be unexcited in the absence of an imbalance. The noise accompanying the
signal is reduced and is negligible if we ignore signal-dependent noise effects.
The vacuum fluctuations entering the other input port, as shown in Fig.
12.13b, emerge at the signal output port, and the contribution to the hori-
zontal output beam is negligible. The schematic (Fig. 12.13c) at the bottom
of the figure shows the superposition. As we can see, the noise accompanying
the signal is due to the zero-point fluctuations entering the vacuum input
port.

If one feeds squeezed zero-point fluctuations, represented by an ellipse
(of the proper orientation) in Fig. 12.14, into the vacuum input port, an
analogous argument shows that the noise accompanying the signal can have a
reduced in-phase component. A homodyne detection that is phased along the
signal direction sees reduced noise. In constructing the squeezed output noise
in the figure, the small imbalance in the interferometer has been neglected
(i.e. signal-dependent noise has been neglected).

Figure 12.15 shows an experimental setup used to demonstrate a phase
measurement at a noise level below shot noise [168]. The setup consists of
a squeezing apparatus, followed by an interferometer whose phase change
is to be measured and a homodyne balanced detector. In order to suppress
GAWBS, the pump pulse is split into two pulses, one delayed with respect
to the other by 500 ps. A phase modulator reverses the phase of the second
pulse after passage through the squeezer. The interferometer whose phase
imbalance is measured is made of bulk components, with one mirror mounted
on a piezoelectric mount. The phase is changed sinusoidally at 50 kHz by a
voltage drive of the piezoelectric mount. Figure 12.16 shows the spectrum of
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Fig. 12.13. Quantum noise in phase measurement

(a)
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the homodyne-detector current at and around 50 kHz for two conditions: (a)
with the squeezed vacuum blocked from entry into the interferometer and
(b) with it unblocked. It is clear that the noise level for case (b) is below
that of case (a). Calibration shows a lowering of the noise level by 3 dB. This
improvement is less than the 5 dB shot noise reduction level, mainly owing to
the additional losses in the interferometer constructed of bulk components.
However, this experiment illustrates the possibility of phase measurements
performed below the shot noise level.
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Fig. 12.14. Reduced quantum noise in phase measurement by squeezed-vacuum
injection
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Fig. 12.15. Experimental setup for sub-shot-noise phase measurement with a
Mach-Zehnder interferometer whose optical path length is piezoelectrically varied
at 50 kHz
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12.9 Generation of Schrodinger Cat State
via Kerr Effect

Thus far we have studied the very practical aspects of shot noise reduction us-
ing a nonlinear Mach-Zehnder interferometer, with the Kerr effect responsible
for the nonlinearity. The predictions can be, and have been, tested experi-
mentally. Now we leave this realistic realm for an excursion into a thought
experiment that is not realizable in practice, but which is nevertheless in-
triguing.

We discussed the Schrodinger cat state in conjunction with the definition
of the Wigner function in Chap. 7. Now that we have an operator formalism
for the Kerr effect, we can show that a Schrodinger cat state could be gen-
erated in principle via the Kerr nonlinearity via propagation of a coherent
state [67]. In such propagation, the evolution of the state 10) is

Id') = exp(iicAtAtAA)10) = exp(-ir.AtA) exp[iK(AtA)2]10) , (12.46)

where rc is an appropriately defined Kerr effect parameter. Suppose we start
with a coherent state

e-1.1''2 E /-,In) (12.47)
n.
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The output state is

ex icAtA ex AtA e-1,,1'12 1:
a

n
P(-i ) )2 ] ny

In)

= ex i,cAtA e-1012/2 Eex cn2 an InP(- ) P(i)I )
n n.

(12.48)

We pick the special case when the coefficient i = it/2. This means that
one single photon produces a phase shift of 90°. We ignore the multiplier
exp(-ircAtA), since it represents a linear element producing a simple phase
shift. Now, note an interesting property of the square of an integer. It is clear
that for an even number, its square is a multiple of four. The square of an odd
number n = E+1, where E is an even number, is n2 = (E+1)2 = E2+2E+1.
One can see that n2 = 1+ mod(4). Hence

1+mod(27r)7n2 =
2

Therefore,

for n odd

mod(27r) for n even.

eircn2 = (-1)ne-i7r/4]

and

exp[irc(AtA)2]Ia)

= e-Ia12/2 ein/4]n) + e-ia/4 (-1)n -In)
72= En n! n!

(e«/4Ia) + e-ilr/4I - a))

(12.49)

(12.50)

This is the Schrodinger cat state of (7.96). The Kerr coefficient would have
to be unrealistically high to generate such a state. A pulse one picosecond in
duration of one single photon of 1 micron wavelength carries a peak power of
roughly 10-7 W. A fiber Kerr nonlinearity of 3.2 x 10-16 cm2/W and a mode
profile of 10 µm2 would call for a lossless fiber a million kilometers long to
achieve a phase shift of 90°.

Another word of caution is in order. This example of generation of a
Schrodinger cat state treats the fiber propagation in terms of a single mode.
Even if only one coherent state associated with the propagation constant 0
is excited at the input, zero-point fluctuations in all the other modes enter
the fiber. Four-wave mixing of these zero-point fluctuations with the pump
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leads, in fact, to infinities, i.e. singularities. In reality, the Kerr medium does
not respond instantaneously, i.e. it has a response of finite bandwidth. When
this finite response time is taken into account, the singularity is removed.
But the response of the fiber is quite different from the idealized model used
to show how a Scrodinger cat state could be generated.

12.10 Summary

In this chapter we discussed in detail the x representation of field operators.
It is the representation convenient for the analysis of the Kerr effect for
pulses with a temporal (or, rather, spatial) profile. In the next chapter it will
be used to deal with dispersive propagation as well. Next, we analyzed the
generation of squeezed vacuum by a nonlinear fiber Sagnac loop at the zero-
dispersion wavelength of the fiber. This was followed by a description of the
experiments that verified the predictions of the theory. Guided-acoustic-wave
Brillouin scattering was found to be an impediment to unfettered squeezing
with optical pulses, an impediment that could be overcome, however, by
proper choice of the exciting source or subsequent processing of the pulse(s).

This squeezing with pulses is analogous to the squeezing of continuum
radiation in a Kerr medium. Pulse excitation raises the stimulated Brillouin
backscattering threshold. The use of a Sagnac loop has the additional ad-
vantage of saving the pump power, to be used as local-oscillator power. If
the available power is limited, as it most often is, this scheme promises to
yield improved interferometric measurement accuracy in systems in which
quantum noise is the dominant source of noise.

Squeezing with Gaussian pulses at the zero-dispersion wavelength of the
fiber incurs a penalty in the noise reduction ultimately achievable owing to the
different orientations of the squeezing ellipse. Even perfect squeezing could
not achieve a reduction of the noise below shot noise of better than about
7 dB. The question arises of whether this penalty could be avoided. In the
next chapter we shall investigate squeezing with soliton pulses operating at a
center wavelength at which the fiber has negative dispersion. A particularly
convenient operating wavelength is the 1.54 µm wavelength of erbium-doped
fiber lasers, which have been perfected for use in long-distance optical com-
munications. We shall see that squeezing with solitons does not suffer the
noise penalty that is encountered with pulses propagating in fibers at zero
dispersion.

Problems

12.1* Determine the peak phase shift 0 for a Gaussian pulse of peak in-
tensity 50 W propagating over a fiber of length 50 m with an effective area
Aeff = 80 µm2; A = 1.55 µm; n2 = 3 x 10-16 cm2/W.
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12.2 Evaluate the signal-to-noise ratio of the measurement of phase shown
in Fig. 12.13. The probe is in a coherent state 1a), the squeezed vacuum
entering the other port is characterized by v.

12.3* Evaluate the shot noise reduction for a Gaussian pulse as a function
of the angle 00, as shown in Fig. 12.6.

12.4 Evaluate the shot noise reduction for a hyperbolic secant pulse of peak
phase shift cu0.

12.5 By the same approach as we used to quantize the Kerr effect in the x
representation, quantize the response of a second-order nonlinearity involving
signal and idler propagation.

12.6 The state 10) = (1//)(i1) + 12)) is passed through the Kerr medium
of Sect. 12.9. Find the output state.

Solutions

12.1 Use the meter as the unit of length. The phase shift for
P is

21r
n2 P 2= 2,7r x3x10-20x 50x50

A Aeff 1.55 -x10-6 80 x 10-12

= 3.8 radians

a peak power

at the peak.

12.3 The squeezing is characterized by
1µl2+IvI2-211tvl

cp = arg(µv) - arg(2aL).
The pump phase is chosen so that for the maximum squeezing at the

phase angle ho, optimum projection is achieved, i.e.

1,112 + Iv12 - 2iµvI cos cp

= 1 + 2 (p 0 - 2(P0 1 + 450 = ( 1 + 00 - 00)2 .

When the squeezing is less, the pump phase is not optimum. We have

coscp = cos(tan-1 0 - tan-1 00)

01 1

+
P

VI-1- l+00 l+io
Thus

(µ12 + Iui2 - 21µvl cos cp = 1 + 202 - (1+!"0).2cu

l+ct
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The noise is weighted by the local oscillator pulse shape, which is also a
Gaussian. The integrated noise suppression is

l
fdr{1 + 22(T) _ [1 + (T)o]) exp(T2) ,

o JJJ

with -P(T) = io exp(-r2). The integral evaluates to

z

+ 20° 1
Oo 20,

VI -+02 02

In the limit 4Po -4 oo, the value of the function becomes

1 -/+ 1 =0.16.



13. Quantum Theory of Solitons and Squeezing

In Chap. 12 we studied the generation of squeezed vacuum in a Sagnac fiber
loop at the zero-dispersion wavelength of the fiber. For practical reasons,
pulses were used. In a dispersionless fiber, the analysis proceeds by subdi-
viding the pulse into time intervals containing rectangular segments of in-
tensity, each of which generates squeezed radiation within its time segment.
The governing equation was linearized. If the Kerr effect is treated as in-
stantaneous, the full nonlinear analysis runs into singularities [171]. A kind
of ultraviolet catastrophe is produced because the zero-point fluctuations at
all frequencies mix eventually. The linearized analysis avoids this singularity,
and can be proven to be adequate for reasonable distances of propagation
and amounts of squeezing [109]. A more careful model of the Kerr nonlinear-
ity that takes the finite response time of the Kerr medium into account also
avoids the singularity [171]. A third approach, that of quantizing the time
in terms of shortest allowable time intervals [172], avoids the singularity but
leads to unphysical periodicities. The quantized soliton equations introduce a
bandwidth limitation via dispersion. As a consequence, the quantum analysis
of solitons avoids entirely the singularities associated with an instantaneous
Kerr response.

Squeezing of solitons is of interest because solitons maintain a uniform
phase across their intensity profile. The amplitude-phase fluctuation ellipse
is thus a property of the entire soliton, with a fixed phase angle of its minor
axis across the entire soliton pulse. In detection, the projection of the squeezed
fluctuations does not experience the averaging over different orientations of
the squeezing ellipse that occurs in the case of a pulse at zero dispersion.
Hence, the shot noise reduction is not limited to 7 or so dB, which was
shown to be the limit when squeezing was effected with nonsoliton pulses at
the zero-dispersion wavelength of the fiber.

Quantum analyses of solitons have been presented by several authors.
A quantum analysis of soliton propagation and soliton detection based on
stochastic differential equations has been carried out numerically by Carter et
al. [173] and by Drummond et al. [174,175]. Haus et al. [176] started from the
classical inverse scattering theory using Kaup's quantization procedure [177].
The transition to classical stochastic differential equations calls for the in-
troduction of noise sources along the fiber. A full quantum treatment has
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been presented by Lai and Haus [178,179] using the time-dependent Hartree
approximation followed by an exact analysis based on the Bethe ansatz [180].
The soliton states were constructed from a superposition of eigenstates of the
Hamiltonian. Since the propagation along the fiber is described by a Hamil-
tonian, no Langevin noise sources appear in this approach. This seems to
contradict the approach of [174], which contains distributed noise sources.
This apparent contradiction was the topic of a paper by Fini et al. [181],
in which it was shown that the noise sources of [174] do not contribute to
the expectation values of the operators. A fully analytic treatment based on
linearization of the quantum form of the nonlinear Schrodinger equation of-
fers the simplest approach [109]. It is this approach that forms the basis of
the present chapter. The outcome of the analysis has a simple physical inter-
pretation. A soliton behaves like a wave and a particle. The particle nature
is represented by momentum and position operators obeying the standard
commutation relations. The wave nature is represented by photon number
and phase operators (or more precisely the in-phase and quadrature field
operators). The expectation values of these operators can be measured in
homodyne detection with properly shaped local-oscillator waveforms.

We generalize the Hamiltonian derived in Chap. 12 for the case of disper-
sive propagation in Sects. 13.1 and 13.2. Then we set up the quantized non-
linear Schrodinger equation using the developments of Sects. 13.1 and 13.2.
Next we linearize the equation. Once the equation is linearized, no ordering
of the operators is required and the solution is that of a classical equation
with c-number variables. The classical perturbation analysis treated in Chap.
10 can be applied to the quantum problem. In Sect. 13.5 we consider the the-
ory of measurement of the soliton perturbation parameters, which is then
applied to a phase measurement in which the probe consists of a train of soli-
ton pulses. An increased signal-to-noise ratio can be achieved with squeezed
solitons, as described in Sect. 13.6.

Thus far, generation of squeezed vacuum using squeezed solitons has not
demonstrated large amounts of squeezing [182]. The soliton pulse width is
inversely proportional to the square of the peak intensity. With available
fiber dispersions, it is necessary to use subpicosecond pulses in order to ar-
rive at acceptable peak pulse intensities. The much broader bandwidths of
these pulses introduce new effects that have not been fully characterized.
The achievement of larger amounts of squeezing with solitons is still a goal
of ongoing research.

13.1 The Hamiltonian and Equations of Motion
of a Dispersive Waveguide

In Sect. 12.1 we considered the equation of a dispersion-free waveguide, such
as a standard fiber in the wavelength regime of 1.3 um. When the waveguide
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is dispersive, the Taylor expansion of the frequency as a function of the
propagation constant 0 must be carried out to higher order:

00 n
bon (13.1)w(/3) = wo(0.) +

n! don

where /3 = /30 + S/3. First we write down the standard Hamiltonian and
introduce the expansion (13.1). We take note of the fact that the spectrum
occupies a finite interval /30 -,A < 0 < /30 +,d:

R+°
H = 21rht f d'aw(13)at(,a)a(la)

p °
00

1= 27r i f
+

d/3 Cwo
+ nl do

n
S/3o at

a0-° I\ n=1 a J

(13.2)

Next, we introduce the Fourier-transformed creation and annihilation oper-
ators:

=
h / ° °O 1 dnw 1SoH
27r J °

dbo
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An interchange of the orders of integration gives

f

fH = -w0 f dx at (x) J dx' a(x') dS/3
2,7r

dnw+2 fdx at(x) fdx'a(x')fd8/3(> S/3n eibQ(y-x')
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fdxat(x)a(x).

ax
(13.4)

Here we have replaced the Nyquist function by a delta function, a legitimate
step if the excitation extends over a time interval much smaller than 1/L/3.
The Heisenberg equation of motion for the operator a(x) is



448 13. Quantum Theory of Solitons and Squeezing

1
at&(x) _ -1CWv +

00

(n
n didnLa a'

n a n)&(x) (13.5)
n=1

Again we may simplify this equation in two steps:

(a) we make the replacement &(x) -s &(x) exp(-iwot), and
(b) we make a change of variables that transforms the coordinates, t -4

t - (d/3/dd)x and x -* x.

Without changing notation, we obtain

a 00 (-i)nt1 dnw an

n

&(x)
\ n! don axnata(x) -2

(13.6)

If we retain only the first term in the summation, thus including only the
simplest form of group velocity dispersion, (13.6) is the Heisenberg equation
of motion of the Hamiltonian

H
2 d)32

at
(x)

aa
&(x) .

Integration by parts leads to a more familiar form,

2

2 d,32 ax
&t (x) a &(x) .

(13.7)

(13.8)

This is the second-quantized Hamiltonian of particles with mass. Thus,
dispersion imparts mass to the photon. The photon is coupled to the material
and the combination of electromagnetic field and material excitation produces
this effective mass for what may be called a "dressed" photon. If we specialize
to the simple case of GVD represented by the second derivative, the equation
of motion (13.6) simplifies to [see Appendix A.19]

a 2

ata(x) =
12! d02 8x2

&(x) . (13.9)

This equation for the envelope amplitude operator bears a close resem-
blance to the classical equation for a wavepacket envelope. There are dif-
ferences, however. The classical equation involves the first derivative with
respect to the spatial coordinate z, not the time t. A replacement of t by
z/v9 can fix this discrepancy. In the classical equation the second derivative
with respect to x is replaced by a time derivative. This can be fixed as well
by the replacement x -4 v9t. With these changes of notation (13.9) reads

d 2W a2
19za(v9t)

= i2!
(d_)3d,Q2

0-t2a(v9t) . (13.10)
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Correspondence with the classical form is established if one can argue that
(d/3/dw)3d2w/d/32 = -d2/3/dw2. But this relation is a simple consequence of
differential calculus. Indeed,

d2/3 _ d 1 _
)(

1 dew d/3 _ d/3 3 dew

( )dw2 dw /d/3dw (dw /di) 2 d/32 dw dw d/32

Thus we have shown that the Hamiltonian (13.7) leads to an equation of
motion for the operator a(x) that is in one-to-one correspondence with the
equation of motion of the complex field amplitude in a dispersive waveguide.

13.2 The Quantized Nonlinear Schrodinger Equation
and Its Linearization

The Hamiltonian of the Kerr effect in the x representation has been derived
in Sect. 12.3:

HK = -hi

2
J

dx at (x)at (x)a(x)a(x) . (13.11)

When the Kerr Hamiltonian (13.11) is added to the Hamiltonian (13.7), the
Heisenberg equation of motion becomes

&(x) + iKat (x)a(x)a(x) , (13.12)ata(x) = 2CaaX2

where C =_ dew/d/32. This is the quantized nonlinear Schrodinger equation.
A few words of caution are in order. The mode patterns of modes on a fiber
are not independent of frequency or /3. The present formalism ignores this
dependence. This is an approximation, but a good one, since pulses as short
as a picosecond contain thousands of wavelengths at an optical (infrared)
wavelength of one micron or so. This means that pulses of one picosecond are
very narrow-band and the assumption of ,Q independence of the mode profile
is an excellent one over the range of /3 involved.

The quantized form of the nonlinear Schrodinger equation was solved rig-
orously using the Bethe ansatz [178,179]. The analysis is complicated and
analytic results can only be obtained when certain limits are taken. An ap-
proach that leads to simple analytic expressions and permits physical insight
is based on the linearization approximation [109]. We set for the operator
a(x)

a(x) = ao(x) +L&(x) , (13.13)

where the first term is a c number, and the second is an operator that takes
over the commutation relation of a(x). Thus,
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[Ld(x), Dat(x')] = 8(x - x') . (13.14)

The replacement (13.13) is rigorous, and by itself does not imply any ap-
proximation. Approximations are made when the Schrodinger equation is
linearized in terms of da(x). Thus, ao(x) obeys the equation

a C a2-i ao =
2 axe

ao + Kaoaoao .

The solution is

ao (t, x) = Ao exp[i(t_ C
pot + pox +

Bo/ 12 2

(x_xo_CPOt)

with the constraint

A2c2 = Co K

(13.15)

(13.16)

(13.17)

(see Fig. 13.1). The solution has four arbitrary integration constants, no(=
2jlAol2), po, Bo, and xo. These have been chosen in anticipation of their inter-
pretation as average photon number, momentum, phase and position. In the
classical form of the equation, po had the meaning of carrier frequency devia-
tion. (Note the change of sign convention: po > 0 corresponds to dw < 0.) In
the quantum formalism, it will become the conjugate variable to position, and
hence interpreting it as momentum is more appropriate. Yet it is in the clas-
sical sense that the solution (13.16) is most easily understood. A frequency
deviation causes a change in the propagation constant that accounts for the

_p 0 4 _p 0 z a

Fig. 13.1. The amplitude of the soliton as a function of x at t = 0 for two different
values of no; qo = xo = po = 0. The narrower pulse has twice the photon number
of the wider pulse.
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phase accumulation po'r/2 as the pulse propagates and is responsible for a
group velocity change CpO1 which accounts for the shift of position under
propagation.

The envelope ao(t, x) is so normalized that its magnitude squared gives
the photon number:

f dxjao(t, x)12 = f 1 A012 sech2
(x -

x0
Cpot ) dx = 2IAoft = no .

(13.18)

In the subsequent analysis, we shall set po = 00 = xo = 0 and jA01 = no/2
which simply means that we have chosen a coordinate system whose origin is
at the pulse center, we have set the phase equal to zero, and we have picked
a momentum (or carrier frequency) that coincides with the nominal carrier
frequency w0.

When the ansatz (13.13) is introduced into the nonlinear Schrodinger
equation, and terms of order higher than first in A& and A&t are dropped,
we obtain a linear equation of motion for these two operators:

2

-i at Ad
2 axe

A& + 2KIao12Aa + Ka2Aat . (13.19)

The equation couples A& and Adt in a way characteristic of a parametric
process as described in Chap. 11. It is worth reiterating that linear equa-
tions of motion of an operator are in one-to-one correspondence with linear
equations of motion of the classical evolution equation. In the integration of
such equations one does not encounter products of operators, for the inclu-
sion of which one would have to use the commutation relations. Hence, the
integration can proceed "classically", as if the operators were c numbers. The
classical transfer functions apply directly to the quantum problem.

We note that Aa must consist of two parts: a part A&SOi that describes the
change of the soliton parameters, i.e. a part that is associated with the soliton,
and a part Aacont that is not associated with the soliton, the continuum part:

A& = Aaso1 + A&cont . (13.20)

The soliton perturbation is with respect the four degrees of freedom of the
soliton: the photon number, the phase, the momentum, and the position.
These perturbations are now all operators. They are functions of t. As in the
classical case, we attempt a solution of (13.19) through separation of vari-
ables, using the solutions of the classical form of the nonlinear Schrodinger
equation as a guide. We write the perturbation as a superposition of operators
with associated functions of x. The operators for photon number and phase,
An and A9, have the usual interpretation. The operator of the position, Ai,
is associated with the position displaced from x0, the operator for momentum
with the shift from the carrier frequency po. A carrier frequency shift Ap cor-
responds to a change of propagation constant A/3, h,3 being the momentum.
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It is important to note that the change of momentum of a wavepacket with
an average number of photons n,, is equal to n0z p. Hence, it is natural to
write the perturbation in the form

D&SO _ [dn(t) f,,,(x) + ae(t)fe(x) + ax(t)ff(x) + no AP(t)ff(x))

2

x exp (i KA° t

(13.21)

The functions fz(x) are chosen, as in the classical analysis, as derivatives
of the soliton evaluated at t = 0. We choose the phase of Ao to be zero, i.e.
Ao is real and positive. We have

fn(x) =
2 _-

[1 - x tanh(x/e)Jsech(x/e) . (13.22)

In taking the derivative with respect to A0, account has been taken of the
area theorem, which ties changes of amplitude to changes of pulse width:

fe(x) = M. (13.23)

f., (x) = A tanh(x/6) sech(x/6), (13.24)

i - / )) h( 13 25)x sec x .ff(x = ( .2
0

The four functions are shown in Fig. 13.2. When the ansatz (13.20) is in-
troduced into the linearized nonlinear Schrodinger equation we find that no
new functions are generated, just as in the classical case. Equating the coef-
ficients of the functions fQ (x), Q = n, 0, x, p, we find the following equations
of motion for the operator soliton perturbations:

dt An
0 , (13.26)

6ed 2K
27)13t,

=
.(

dt
i = CaP , (13.28)



13.3 Soliton Perturbations Projected by the Adjoint 453

fp (x)Ti

0.1

-X
0.1

Fig. 13.2. The shape of the four functions fQ (x), Q = n, B, p, x

dt
'AP = 0. (13.29)

These equations of motion for the operators are in complete correspondence
with the classical analysis. They make good sense. A perturbation of photon
number propagates unperturbed, but affects the phase owing to a change
of the Kerr phase shift. Similarly, a perturbation of the momentum (carrier
frequency) propagates undisturbed, but affects the displacement owing to the
change of group velocity with carrier frequency.

We find that the commutator of 1n and ,AB on one hand, and that of Li
and Ap on the other hand, are constants of motion. Indeed, if we consider
[arc, L O] as an example, we find from (13.26) and (13.27)

dt [an, aB] = [+ oc [,An, dn] = 0 . (13.30)

In the same way, we can show conservation of [fix, Lp]. Even though the
equations of the operators have been obtained by a linearization approxima-
tion, the expectation values of the phase and timing perturbation operators
need not remain small. They are driven cumulatively by a photon number per-
turbation and by a momentum perturbation, respectively. The accumulated
changes may become large, the only requirement is that the perturbation per
unit length be small to permit the linearization of the equations.

13.3 Soliton Perturbations Projected by the Adjoint

We have developed equations of motion for the perturbations of solitons.
In order to determine the initial amplitudes of the perturbations, we must
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be able to determine the four perturbation operators with the equations of
motion (13.26)-(13.29) from a given initial condition, Ad(x) at t = 0. This is
accomplished by the adjoints already developed in the context of the classical
equations of motion. They are

fi(x) = 2Ao sech(x/e) , (13.31)

fe(x)
Ao

rl - X sech(x/)J sech(x/e) ,

L (X)(x) = Ao

,
sech(x/) ,

fP(x) = 2Ao-

-0.1

fp (X)/i

X

0.1 -X

0.1

-miX

Fig. 13.3. The shape of the four adjoint functions f
Q

W, Q = n, B, p, x

(13.32)

(13.33)

(13.34)

Here the adjoints have been normalized so that their products with the
original perturbation functions integrate to unity. The adjoints are shown in
Fig. 13.3. They obey the self- and cross-orthonormality condition

Re
L

f f P (x) fQ (x)dx] = 6PQ for P = n, O, x, p . (13.35)

Next, we note that the initial condition dd(x) can be separated into
Hermitian operators
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f&(X) = Qa(1) (x) + ida(2) (x) , (13.36)

with the commutation relation

i
(13 37)

,

l 1 2
.

We find that the operators are related pairwise to the in-phase and quadrature
fluctuations:

zln(0) = ff*(x)a(1)(x)dx (13.38)

'AB(0) = iJ f*(x)Lai2i(x)dx , (13.39)

L.' (0) = ff*(x)za(1)(x)dx, (13.40)

zp(0) = i J
f* (x)L1a(2) (x)dx . (13.41)

The commutator of an(x) and ,A8(x) is found using (13.37):

[an, AB] =
2

dx f (x) f (x) = i .

The commutator of Ax(x) and Ap(x) is

(13.42)

no,,Ap] =

2

/ dx fi(x) fP(x) = i . (13.43)

Ln and Ah commute with both Lx and Lp. These are the commutation
relations of the photon number and phase of a wave, and the position and
momentum of a particle. The soliton combines properties of wave and particle
and possesses pairs of operators describing both properties. As shown in the
preceding section, the commutators are invariants of the equations of motion
(13.26)-(13.29).

A soliton in a uniform zero-point fluctuation background does not form a
minimum-uncertainty packet. Indeed, when we set

(laa(x)aat(x')I) = 8(x - )

and

(13.44)

(1za1(x)zAa(x')1) = 0 (13.45)
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as appropriate for a vacuum state, then the fluctuations of the in-phase and
quadrature components, in terms of which the soliton perturbations are ex-
pressed, can be evaluated as follows:

(x)1al1l (X1))

= 4 [(da(x)da(x')) +

(dat(x)da(x')) + (da(x)dat(x'))

= 4[(da(x)da(x'))] = 48(x - x')

(13.46)

where we have used (13.44) and (13.45). The expectation values of the prod-
ucts of the creation operators and of the annihilation operators vanish because
of the stationarity of the zero-point fluctuations. In a similar way we find

[(aa(x)aat(x')] = 16(x - x') (13.47)1
4 4

and

1(da(1)(x)da(2)(i) + da(2)(x)da(1)(x1)) = 0 . (13.48)

With these expressions it is easy to evaluate the fluctuations of photon num-
ber and phase:

(dn2(0)) = 4 f Ifn(x)I2dx = no . (13.49)

These are the fluctuations of a Poisson process. The phase fluctuations are

(de2(0)) = 4
f if (x)I2dx =

0.607
(13.50)

The product is

(dn2(0))(d82(0)) = 0.607 > 0.25. (13.51)

The phase fluctuations are larger than those of a minimum-uncertainty state
of photon number and phase, for which the uncertainty product would be
equal to 1/4.

As mentioned earlier in Chap. 10 in the development of the adjoint of
the linearized NLSE, the linearized equation does not conserve energy. The
linearized equation describes a parametric process in the presence of a pump
which is capable of generation or annihilation of photons. A consequence
of this fact is that the linearized equation is not self-adjoint, requiring the
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pairing of its solutions with those of the adjoint equation. Conservation of the
cross-energy of the solutions with their adjoint then leads to the orthogonality
relations.

Equations derived from a Hamiltonian conserve energy and, in the quan-
tized form, the commutator brackets. Equations that do not conserve energy
are not derivable from a Hamiltonian. Therefore, one may not assume a priori
that the quantized form of such equations conserves commutator brackets.
It is easy to show that (13.19) in fact conserves the commutator [Aa, Aat].
Hence, the linearization of the NLSE does not call for the introduction of noise
sources. This fact could have been anticipated from the eminently reasonable
conservation relations of the commutator brackets [An, A9] and [Ap, AI]. We
have mentioned that in [174] Drummond and Carter developed a formalism
of soliton squeezing that arrived at classical stochastic equations of motion
for numerical solutions of the soliton-squeezing phenomenon. Their formalism
contains noise sources. Hence one must ask the question of how our formal-
ism, free of noise sources, can agree with [174]. This question was asked and
answered in [181]. It turns out that the noise sources do not contribute to
the perturbation operators in the limit when the linearized analysis applies.

13.4 Renormalization of the Soliton Operators

In the preceding chapter, we have studied squeezing of pulses in dispersion-
free fibers by splitting the pulse into segments of quasiconstant excitation;
the different evolutions of the in-phase and quadrature components of these
quasi-c.w. waves resulted in reduction of one component of the noise. If an
analogy is to be established with this process, we have to arrive at equivalent
in-phase and quadrature components of the soliton.

Thus far, we have used operators representing the perturbations of photon
number, phase, position, and momentum. The perturbation operator Aa(x)
has the commutator [Aa(x), Aat (x')] = 5(x - x'), and thus has dimensions
of inverse length to the power of one-half. The photon number perturba-
tion An is given by An = 4Ao AAo + 2A2,UAU = 2Ao AAo
where we have used the area theorem to relate the pulse width change to
the pulse amplitude change. Consider a continuous wave of amplitude Ao
and its associated photon number no = Ao. The change in photon number is
An = 2Ao AAo. When quantized, the perturbation AAo would be replaced
by the in-phase operator, AAo --> AA1. This fact and the dimensions of
the Aa(x) operator suggest that the soliton perturbation AAo is to be
replaced by

AAo --> AA1 . (13.52)

Its associated expansion function is changed by the renormalization from the
expansion function of the photon number perturbation to the following:
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f l (x) _ fl- X
tank l j sech (X

The adjoint function with

thee

property f dx f1(x) f i (x) = 1 is

L, W _ sech I

(13.53)

(13.53a)

The same approach suggests the definition of the quadrature component as

A,, dB\ - dA2 . (13.54)

We find for the expansion function

f2(X) _ sech(

and the adjoint function is

(13.55)

f2(x)
X

tanh(x)] sech\\1 x 1 . (13.55a)

A similar renormalization is possible for the perturbation operators of posi-
tion and momentum. As we shall see, it is convenient to change the commu-
tation relation by a factor of 1/2. This is accomplished by the identification
of the new operators aX = A, zx// and AP = no The com-
mutator is now

The respective perturbation functions become

fx(x)
_ tank sech (0

and

fP(x)= sech(l

The adjoint functions are/

L(x) sech I X I

and

.f(x)
= 7 tanh C / sech (0

(13.56)

(13.57)

(13.58)

(13.57a)

(13.58a)
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The expansion (13.21) of the pulse is now in the form

Lasot = [,,AA1(t)fi(x) + DA2(t).f2(x) + L1X(t).fx(t) +,AP(t) fp(x)]

x exp C

The commutator of the in-phase and quadrature components is

[,AA1izA2] = if dxfi(x) f

dx f dx f2(x')5(x - x') = 2 ,

and has the expected value.
It is clear from the preceding discussions that the expansion of a pulse

excitation into a soliton part and a continuum part is an expansion into
orthogonal modes. These modes are phase-dependent; the components in
phase with the pulse ao(t, x) are different from those in quadrature. They
form an orthonormal set into which any excitation can be decomposed and
whose amplitudes are quantized. Of course, the decomposition makes phys-
ical sense only when the expansion represents perturbations of a hyperbolic
secant pulse. But the pulse need not be a soliton; for example, it could be
a hyperbolic secant pulse produced in the output of a beam splitter with a
soliton impinging on one of its input ports.

Next, it is of interest to determine the mean square fluctuations of the
soliton perturbation parameters, if the background is zero-point-fluctuations.
We find

((,LAA1)2) = f dx f(x) f dx

f f f f 1(x')6(x - x')

4
f dx If *2(X)12

(13.61)

The mean square fluctuations are twice the minimum-uncertainty value
for equal in-phase and quadrature fluctuations. The remaining three fluctu-
ations can be computed analogously. It is clear that they involve the values
of the integrals

f dxIfQ(x)12=2, 1.214, 6, 3; Q=1,2,X,P. (13.62)
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The uncertainty products are

((aA,)2)((dA2)2) = 6 x 2.43 (13.63)

and

(aX2)(dp2) = 16
x 1.09 . (13.64)

The in-phase and quadrature fluctuations are uncorrelated:

(/ A1ZA2 + DA2LA1) = 0 . (13.65)

The renormalization has changed the uncertainty ellipse. In the photon
number-phase description, the photon number fluctuations were at the Pois-
son value; the phase fluctuations were larger than the minimum uncertainty.
In the in-phase and quadrature description, the amplitude fluctuations are ex-
cessive, whereas the quadrature fluctuations are close to the minimum value.
This shows that the description of squeezing is dependent upon the repre-
sentation. In fact, the minimum-uncertainty ellipse of the momentum and
position of a particle is plotted along axes of different dimensions and thus
the shape of the ellipse is not an indication of "squeezing". It is only when
the noncommuting variables are of the same dimensions and of the same
character, such as the in-phase and quadrature components of the electric
field, that squeezing can be identified. The stationary character of the stan-
dard fluctuations dictates a circular locus of uncertainty. Squeezing produces
nonstationary statistics that manifest themselves in an elliptic uncertainty
locus.

In order to appreciate better the significance of the in-phase fluctuations,
we return to (13.52) and take note of the fact that the photon number fluc-
tuations are given by

an = 2Ao LXAo - 2Ao LA1 .

Thus, the mean square photon number fluctuations are

(ant) = 2A262(/A2) = (n) .

They have the Poisson value. Hence, the in-phase fluctuations of a soliton
with twice the minimum value are, in fact, the fluctuations associated with
a Poisson distribution of photons.

The position and momentum operators do not obey the standard com-
mutator relation, but a new one, in one-to-one correspondence with the com-
mutator of the in-phase and quadrature components. This renormalization
also introduces a welcome symmetrization to the equations of motion of the
operators. In lieu of (13.26)-(13.29) we now have

(13.66)
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dt
AA2 DAi

dt
aX zip,

dtP=0,
where we have used the area theorem KA2 = C/ 2.

13.5 Measurement of Operators

(13.67)

(13.68)

(13.69)

The definition of operators is clarified when measurements can be described
that determine these operators. Figure 13.4 shows a soliton (hyperbolic-secant
pulse) source, followed by a beam splitter. Part of the output is modulated
in a "soliton modifier" that produces the soliton perturbation; the other part
is used as the local oscillator, with a proper pulse shape change and phase
adjustment. The two signals are combined in a balanced detector. The pulse
shape changer is a filter that produces an output coherent with its input. Such
optical pulse-shaping functions have been demonstrated by Liu et al. [183]
with a scheme in which a grating spatially disperses the spectrum of an
incoming pulse, a spatially distributed absorber and phase shifter modifies the
spectrum, and finally the spectrum is spatially superimposed and reassembled
by another grating. The pulse shaper produces a local-oscillator pulse fL(x),
which can be treated classically if the usual linearization approximation is
used in the analysis of the balanced detector. The soliton modifier produces
an excitation da(x) from an incoming pulse a(x). We model the detector as
an ideal photon flux detector with a response much slower than the inverse

Fig. 13.4. Setup for measurement of operators
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pulse widths of the local-oscillator and incident pulses. The difference charge
is

Q = 41 - Q2) = iq f dx [fL(x)dat (x) - fL* (x)A&(x)] , (13.70)

where q is the electron charge. Note that the operation on the field operators
that produces the difference charge is identical to the operation that projects
out the four operators of the soliton perturbation. Since the difference charge
of homodyne detection contains no fluctuations from the local oscillator, it
is a noise-free measurement of the signal incident upon the signal port of
the beam splitter. Various choices of the pulse shape and phase of the local
oscillator give different responses. Thus, for example, if the local-oscillator
pulse is chosen so that ifL(x) = -f (x)/2, the expectation value of the
signal is the phase change of the soliton:

(Q)
q

(13.71)

In this measurement, only the perturbation of the phase contributes to the
signal. Note that in an actual measurement, the local-oscillator pulse would
be chosen to be many times larger in order to achieve a gain greater than
unity. In a similar way we find that the expectation values of the timing
perturbation and the carrier frequency perturbation are picked out by the
choices ifL(x) = fi(x)/2 and ifL(x) = -fP(x)/2.

These three choices of the local-oscillator pulse all result in a measurement
of an observable perturbation. The main pulse is orthogonal to the projections
via the local oscillator. If the local oscillator is chosen so that ifL(x) =
1f (x), the balanced detector measures both the photon number and its
perturbation:

(Q) = no + (Ah) . (13.72)
q

The reader may have noticed that some of the perturbations Aa considered
here were very simple soliton perturbations, the generation of which does not
require a sophisticated filter. A phase shift can be produced by a phase shifter,
a time delay by a delay line, and a photon number change by attenuation
followed by propagation through a fiber to reestablish the height-width ratio
of the soliton.

13.6 Phase Measurement with Soliton-like Pulses

Pulses, and in particular solitons, can be used as probes in a Mach-Zehnder
interferometer for the measurement of the phase imbalance of the interferom-
eter. Here we determine the signal-to-noise ratio of such a measurement in the



13.6 Phase Measurement with Soliton-like Pulses 463

Fig. 13.5. Phase measurement with soliton pulses

case when the probe solitons have fluctuations given by (13.63) and (13.64).
A schematic of the experiment is shown in Fig. 13.5. A Mach-Zehnder inter-
ferometer is unbalanced by small phase shifts 0/2 in one arm and -0/2 in the
other arm. Into the input port (a) are fed hyperbolic-secant-shaped pulses
ao(x) with zero-point fluctuation background. Vacuum fluctuations enter the
vacuum port (b). Owing to the interferometer imbalance the output from
port (d) is composed of a signal part and vacuum fluctuations. We neglect
the signal-dependent noise contribution. We have

d = 2 [ao(x)eie/a -
ao(x)e-;B/2] + Zd(x)

= iao(x) sin 2 + Ad(x) (13.73)

.ti iao(x)

2

+ ',Ad(X)

The operator Ad(x) represents pure vacuum fluctuations. The fluctuations
are not changed by the interferometer imbalance, since the contribution of
the vacuum fluctuations of port (b), lost owing to the imbalance, is made up
by vacuum fluctuations from port (a).

The signal is a hyperbolic secant. The simplest procedure is to project it
out with the pulse itself, thus choosing the local-oscillator function fL(x) _
Ao The detector charge difference is
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Q Q1-Q2
q q

= iq j dx [fL(x)dt(x) - fi(x)d(x)] (13.74)

= q J dx A. [OAo i ad(x) + i Adt (x)] .

We find for the expectation value of the measurement

(Q) = J dxOA2 sech2(x/£) = Ono
4

. (13.75)

The mean square fluctuations are

('6Q2)

q2

f
= J dx J dx'A2 sech(x/e) sech(x'/)

x (I [-i Ad(x) + i Adt (x)1 [-i Ad(x') + i adt (x')11 (13.76)

= J dx J dx'A2 sech(i x')

= fdxAo no .

Thus, we find for the signal-to-noise ratio

S (Q)2 = 02ndN = (QQ2) (13.77)

Let us express the signal-to-noise ratio in terms of the photon number of the
signal. According to (13.73),

f 2 2

signal photon number = J dx Ia.(x)12 2) = no 4 . (13.78)

We find for the signal-to-noise ratio

S
N = 4 x signal photon number . (13.79)

The signal-to-noise ratio is twice that obtained for homodyne detection in
Sect. 8.5. The factor of two improvement in the present case comes from the
fact that the signal is fixed, reflecting the constant phase of the interferometer,
not averaged over a cosine variation associated with a time-dependent signal.
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13.7 Soliton Squeezing in a Fiber

Propagation of a soliton along a lossless dispersive fiber leads to squeezing of
the soliton fluctuations. We note, first of all, that the evolutions of the photon
number and phase on one hand, and of the position and momentum on the
other hand, proceed independently, as illustrated by (13.66)-(13.69). These
evolutions represent the separate natures of the soliton as both a wave and
a particle. Squeezing occurs owing to the coupling between operators that
conserves the commutation relations. With the renormalization of Sect. 13.4
the squeezing can be expressed as the evolution of an uncertainty ellipse of
constant area in the two-dimensional space of the complementary variables.

We repeat the renormalized Heisenberg equations of motion below:

dt,AA1 = o,

d AA2 =
2

QA1 ,

dt
X = 2 DP ,

dt
aP = 0 .

The solutions of (13.80) and (13.81) are

LAl(t) = zlAl(0)

and

(t) = zA2 (0) + 2(t)1A1(0) ,

where

(13.80)

(13.81)

(13.82)

(13.83)

(13.84)

(13.85)

o(t) =_
2

KA2 Ot =
2 2

t

is the classical soliton phase shift.
These two equations describe the evolution of the uncertainty ellipse in

the plane of the in-phase and quadrature components. The mean square de-
viations along the in-phase and quadrature directions are

([,AA, (t)12) = ([,,AA, (0)]2) (13.86)

and
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([zAA2(t)]2) = ([AA2(0)]2) + (13.87)

respectively, with the cross-correlation

1(AA1(0)AA2(t) + AA2(0),AA1(t)) = 2-P(LA2(0)). (13.88)

Since the input is assumed to be white noise, the probability distribution of
the two variables at the input is a two-dimensional Gaussian with mean
square deviations along the two orthogonal axes along the in-phase and
quadrature directions. The 1// points of the Gaussian probability distribu-
tion lie on an ellipse with its major and minor axes parallel to the in-phase
and quadrature component axes. Propagation along the fiber couples the
in-phase component to the quadrature component; fluctuations in amplitude
are transformed into fluctuations of the quadrature component or phase. The
new ellipse of 1/,/ points has new major and minor axes that are rotated
relative to the original axes. The area of the ellipse is preserved in the process.
The mathematical proof can be developed using the formalism presented in
Appendix A.18. Here we present a simple geometric argument.

Consider the original Gaussian probability distribution, with its major
and minor axes as shown in Fig. 13.6. Take a set of sample points that lie
at AA1 i within the differential range daA1. Because these points have the
same amplitude, they experience the same quadrature phase shift. The slice

Fig. 13.6. The squeezing ellipse as constructed from changes of AA2(t) propor-
tional to 6A1(0)
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of the ellipse within that range is translated as shown in Fig. 13.6. In this
manner, the entire ellipse can be split into slices, and each slice shifted by
the appropriate amount. Since the shift is proportional to DA1, one sees that
a new elliptic region is formed, with the same area as the original one. The
greater the shift, the narrower the ellipse and the smaller the minor axis, and
thus the greater the squeezing.

The process of squeezing can be treated in a more formal way by es-
tablishing the correspondence of the solutions (13.84) and (13.85) with the
Bogolyubov transformation that described squeezing in Chap. 11. We have

,,AA(t) - ziA1(t) + i DA2(t) = p(t)dA(0) + v(t),AAt(0) , (13.89)

with

p = 1 + i0(t) and v = iO(t) . (13.90)

The perturbation (13.89) accompanies the soliton pulse ao(t, x). We are
now ready to analyze the generation of squeezed soliton vacuum by the setup
illustrated in Fig. 12.8, repeated in a slightly modified version in Fig. 13.7.
The hyperbolic secant pulse incident upon one of the input ports of the
Sagnac interferometer is split into two pulses of the appropriate area, so that
the two pulses propagate as solitons in the loop. In the process, they each
squeeze the accompanying vacuum fluctuations in the manner indicated by
(13.89). The squeezed vacua in the two arms are incoherent with each other.
At the output of the Sagnac loop, they superimpose incoherently to emerge
from the loop in the two ports of the beam splitter. The classical part of the
pulse emerging from one of the output ports is reshaped, and is reused as the
local oscillator. We assume that the reshaping produces the local-oscillator
waveform

ifL(x) = 2[cosVf1(x)+sin V)f2(x)]exp4(t), (13.91)

pulse
transformer

Fig. 13.7. The squeezing apparatus
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which can be put into the form ideal for the purpose of projecting out a
linear combination of ,AA1(t) and ,AA2(t). The noise of the local oscillator
is suppressed by the balanced detector. The squeezed-vacuum fluctuations
emerging from the other port are projected out in the balanced detector,
resulting in the net charge operator

aQ = -iJ
4

= cos i zA1(t) + sin AA2(t)

= 2 [e-iOAA(t) + e''ODAt(t)]

= vAAt(0)] +e'V'[p* AAt(0) +v*.AA(0)]} .

(13.92)

Equation (13.92) expresses the normalized difference charge in two ways: (a)
as the projection of a vector with components ,AA1(t), DA2(t) onto an axis
inclined at an angle z/b with respect to the (1) axis, and (b) as the sum of
the phase-shifted squeezed input excitations tiLIA(0) + v DAt (0). The two
representations are equivalent, but in particular applications one may be more
convenient than the other. We shall determine the degree of squeezing and
antisqueezing from representation (a). The mean square fluctuations of the
charge are

(,AQ2(t))
= cost (z1A2(t)) + sin 2 u A2(t))

q2

+ sin(20) 2 (AA1(t),AA2 (t) + DA2 (t),AA1(t)) .

(13.93)

If the projection (JQ2(t)!) is plotted in the (1)-(2) plane as a function
of the orientation angle V, an ellipse is traced out, the locus of the root
mean square deviation of the Gaussian distribution of (I L\Q2(t) 1). According
to (13.85), the component in direction (1) remains unchanged, whereas the

l(0)J) as showncomponent in direction (2) shifts proportionally to (IoA2
schematically in Fig. 13.6. The mean square fluctuations of the normalized
difference charge along the two axes are given by (13.86) and (13.87), and the
cross-correlation by (13.88). The probability distribution of the normalized
difference charge in the (1)-(2) plane, with coordinates S1 and 2, is given by

2 z

p( 1, 2, t) a exp -
1 e1 + _2 +

2152
, (13.94)

2 a11(t) v22(t) 0'12 (t)
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where

Q11(t) o12(t)

o2i(t) 0'22 (t)
= (4Ai(0))

20(t) 77 +

(13.95)

and = (1oA2(0)1)/(I AAi(0)I) = 0.607. The Fourier transform of the prob-
ability distribution expressed in k space, the characteristic function, is of the
form

1
C(kl, k2, t) a exp -2 [vll(t)ki + 0'22(t)k2 + 2v12(t)klk2l . (13.96)

The quadratic form in the exponent of the characteristic function can be di-
agonalized by a reorientation of the axes. A coordinate transformation into
new orthogonal coordinates ki and k2 finds the mutually orthogonal direc-
tions along which the fluctuations are uncorrelated. These are the major and
minor axes of an ellipse. The transformation is a unitary transformation of
the matrix which leaves the eigenvalues of the matrix (13.95) invariant. The
eigenvalues are

at = (6A, (O)', I
1 + r 1

2 4
212_

'q )
. (13.97)

These eigenvalues are the squares of the major and minor axes of the uncer-
tainty ellipse. The product of the eigenvalues is

,\+,\- = i7(ZAi(0))2 (13.98)

and is constant, independent of the degree of squeezing. The squeezing and
antisqueezing are illustrated in Fig. 13.8. With zero phase shift, the fluctua-
tions in the (1) direction are shot noise fluctuations. These are equal to twice
the zero-point fluctuations of 1/4. In the orthogonal direction, the fluctua-
tions are less, but they are still larger than 1/4. As the nonlinear phase shift
increases, the branch that represents shot noise at 0 = 0 shows monotoni-
cally increasing fluctuations, whereas the orthogonal direction decreases and
reaches zero asymptotically. Figure 13.9 shows the fluctuations as a function
of the phase angle ?P for different degrees of squeezing and antisqueezing.
This figure shows that the phase angle regime within which a large degree
of squeezing is observed becomes narrower and narrower as the degree of
squeezing is increased. The greater the degree of squeezing, the harder it is
to find the squeezing angle and stabilize the system at that angle.

13.8 Summary

1 2415(t)

The Heisenberg representation of pulse propagation through a dispersive non-
linear Kerr medium (a fiber) leads to operator equations that resemble their
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Fig. 13.8. Squeezing and antisqueezing (the minor and major axes of the squeezing
ellipse) in dB, normalized to the zero-point fluctuations of 1/4, as functions of M

20

10

-10

Fig. 13.9. Fluctuations as a function of phase angle 1/J for different degrees of
squeezing and antisqueezing; 24i = 2,4,8

classical counterparts. When these equations are linearized, an assumption
justified in those cases in which the fluctuations of the amplitude are small
compared with its expectation value, the distinction between the classical and
quantum problem all but disappears. The solution of the linearized equations
does not face the problem of ordering of the operators. Therefore, the solu-
tion of the classical form of the linearized equations is also the solution of the
quantum problem. Differences between the classical and quantum problems
appear only when expectation values of squares and products are taken. This
fact alone, however, is easily taken into account.

We have approached the quantization of the soliton problem via lineariza-
tion. We found that a soliton of the NLSE can be described as a wave-particle
complex sharing quantum properties of both. Four operators describe the
soliton: position and momentum, giving it particle properties; and photon
number and phase (or in-phase and quadrature amplitudes), giving it wave
properties. The operators representing these obey the usual commutation
relations. We found that all four operators were independently measurable
using a homodyne detector excited by an appropriately chosen local-oscillator
pulse. The measurement suppressed fluctuations associated with the contin-
uum.

The propagation of these operators along the fiber is described by total
differential equations. These equations are free of noise sources, because they
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conserve the commutator brackets. It is easy to generalize these equations to
the case of loss in the fiber compensated by gain. In this case noise sources
are introduced. The long-distance propagation of solitons in fibers whose loss
is compensated by distributed gain can be analyzed in this manner. The
analysis of Gordon and Haus [6] that led to the so-called "Gordon-Haus"
limit of soliton propagation is consistent with the quantization detailed in
this chapter.

Squeezing using rectangular pulses at the zero-dispersion wavelength can
use minimum-uncertainty states as input states. We have found that soli-
tons in a zero-point fluctuation background are not in minimum-uncertainty
states. This leads to a penalty in the amount of noise reduction that can be
achieved, but one that is not overly serious.

In the measurement of the squeezing we assumed a pulse shape for the
local oscillator that was an ideal projector of the in-phase and quadrature
components, a combination of f 1 and f 2. In practice it is more convenient to
use the sech-shaped pulse of the pump. This choice of local oscillator not only
deviates from the ideal pulse shape for projection of the soliton fluctuations,
but also couples to the continuum. An analysis of this case has been carried
out [184] which shows that the shot noise reduction is not affected seriously,
and is less the larger the squeezing angle 0 is. The reason for this is that
the ideal local-oscillator pulse shape itself approaches a simple sech for large
squeezing angles.

The generation of squeezed states using pulse excitation is just beginning
at the time this chapter is being written. It is hoped that the analysis pre-
sented here will serve to stimulate further developments in this promising
field.

Problems

13.1 Derive the Heisenberg equation of motion for the Hamiltonian

12
O

l dx { at(x) La a(x)J - lax at(x) I a(x) y

13.2 The Heisenberg equation of motion
(13.9)

describes the effect of second-
order dispersion, or so-called group velocity dispersion (GVD). Derive the
equation of motion for combined second- and third-order dispersions.

13.3* Show that the simple Gaussian operator a(x) = A,,(1/ t + ib) exp
ikx2/2(t + ib)], with proper constraints on the parameter k, is a solution of
(13.9).

13.4* Show that the linearized nonlinear Schrodinger equation (13.9) con-
serves the commutator bracket.
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13.5 A soliton with the uncertainties (13.49) and (13.50) is incident upon
a 50/50 beam splitter. The input from the other port is vacuum. Determine
the uncertainties in the output ports.

13.6 A soliton is incident upon a balanced detector with the local-oscillator
pulse shape i fL (x, t) = (1/2) [cos Eli f X (x, t) + sin 0 fP (x, t)]. Determine the
charge and the mean square fluctuations of the charge. Determine the major
and minor axes of the uncertainty ellipse of the charge.

13.7 Show that simple vacuum fluctuations accompanying a soliton lead to
excessive fluctuations of three out of four soliton parameters.

Solutions

13.3 The operator equation is linear. Therefore standard classical calculus
can be applied to the operator equation:

a
a

_ [ 1 ikx2
]at 2(t + ib) + 2(t + ib)2

a'

a ikx
axa

_
t+iba'

a2 a [

( ikx ) 2 ik ]a,

axe t+ib t+ibEquation
(13.9) is balanced when 1/k = -dew/d'32.

13.4 The linearized NLSE is
2

Yda
2 axe

Aa + 2ilaoI2Lla + ia2 Aat .

The time rate of change of the commutator is
2 2 1

[Da, Dat] = 2 [za, zatJ -
2

I aa ax2 Lat] .

All other terms cancel. The conservation is to be interpreted in the integral
sense. (Compare Appendix A.19.) Integration by parts leads to

2

2[ax2Za,LatJ -3-2[
aA&,axAat 'ax I

and similarly for the other term. In this form they cancel.



14. Quantum Nondemolition Measurements
and the "Collapse" of the Wave Function

This book has dealt extensively with the interaction of optical apparatus
with electromagnetic waves. With this background it is possible to analyze
quantum measurements in the domain of optics. However, the point of view
represented here is not confined to optics; it is an attempt to clarify some
fundamental issues of the theory of quantum measurement. The interpreta-
tion of quantum measurements has long been the subject of controversy. The
von Neumann postulate [8] "that the act of measurement projects the state
of the observable into an eigenstate of the measurement apparatus" is a good
working hypothesis for the interpretation of a quantum measurement. How-
ever, it has been criticized by Bell [9,185] as being an add-on to quantum
theory, which describes the evolution of the states of physical observables
by the Schrodinger equation. The "suddenness" of the collapse of the wave
function into an eigenstate also contradicts physical intuition.

We take the following stand on the meaning of quantum mechanics and
on the act of measurement.

(a) Quantum theory is fundamentally a statistical theory, in analogy with
statistical mechanics, except that the probabilistic nature of the initial
conditions of an evolving quantum system is a fundamental property,
rather than an attribute traceable to incomplete knowledge of a system
with many degrees of freedom.

(b) Quantum theory predicts the evolution of an ensemble of systems and
does not predict the outcome of a single measurement (except in those
special cases in which the system is in an eigenstate of the measurement
apparatus).

(c) The von Neumann postulate stating that a measurement collapses the
observable into an eigenstate of the measurement apparatus cannot be
taken literally, since quantum theory cannot predict the outcome of a
single measurement, but can only give the probabilities of measurements
on an ensemble of systems.

(d) It is misleading to state that the act of measurement perturbs the quan-
tity (observable) measured. Indeed, this statement implies that there ex-
ists a well-defined observable in the absence of the measurement. Bohr
(186] always maintained that an observable can only be defined when
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the measurement apparatus is properly accounted for, a point of view to
which we fully subscribe.

The point of view we take is that a quantum observable can be described
only when the measurement apparatus itself is quantized and treated quan-
tum mechanically. The measurement apparatus is a system with many de-
grees of freedom, which cause decoherence of quantum interferences, thus
enabling an outcome that can be described classically. This approach will
be illustrated further in the optical domain, for which quantization of the
measurement apparatus is relatively simple.

An ideal photodetector measures the number of photons incident upon
the detector without noise or uncertainty. In the process of measurement,
the photons are converted into photoelectrons and the wavepacket carrying
the photons is annihilated. A quantum nondemolition (QND) measurement
[143,187,188], in which an observable is measured without destroying it, was
first proposed for the purpose of improving the sensitivity in the detection
of gravitational waves [143,189]. The concept of QND measurements is of
great help in the study of the theory of quantum measurements, because it
allows repeated measurements on the same observable and thus permits the
determination of the effects of the measurements on the wave function, or
density matrix, of an observable.

In Sect. 14.1 we describe the QND measurement of photons in general,
and show the properties of the interaction Hamiltonian of the system con-
taining the observable and the measurement apparatus. Section 14.2 analyzes
the QND measurement of photon number in a "signal" (the observable) us-
ing a nonlinear Kerr medium. We determine the range of uncertainty of the
"signal" photon number, measured by a probe, and show that the greater
the accuracy of the measurement, the larger the perturbation of the phase
of the "signal". The product of photon number uncertainty and phase uncer-
tainty obeys Heisenberg's uncertainty principle with an equality sign. Section
14.3 goes through the "which path" analysis of a linear interferometer with
a QND measurement apparatus inserted in one of the two paths. It is found
that increased knowledge of the number of photons in one of the two paths
of the interferometer decreases the fringe contrast. Section 14.4 studies the
evolution of the wave function of the observable and measurement apparatus
of a QND measurement. It is shown that a QND apparatus that provides
precise knowledge of the photon number passing through it renders diagonal
the density matrix of the signal, traced over the apparatus states. In Sect.
14.5 we analyze two QND measurements in cascade. We show that the condi-
tional probability of measuring m photons in the second measurement with n
photons measured in the first approaches a Kronecker delta. This means that,
for all practical purposes (to paraphrase Bell [9]), the first measurement has
projected the state of the observable into an eigenstate of the measurement
apparatus. This we consider to be a derivation, from quantum theory, of von
Neumann's projection postulate. It must be pointed out, however, that the
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analysis itself does not lead directly to the collapse of the wave function. All
one can conclude is that an intelligent observer of the first measurement can
predict the outcome of future measurements by starting his or her calcula-
tion with the assumption that the observable is in a photon eigenstate In),
if n photons were measured by the first apparatus. Finally, we look at the
so-called Schrodinger cat thought experiment, which has led to much contro-
versy. We show that the cat is alive or dead with probability 1/2 each, if the
apparatus follows properly the specification in the case described.

14.1 General Properties of a QND Measurement

In a general quantum measurement, the observable Os, the value of the "sig-
nal", is inferred from a change of a probe observable Or,. The probe is coupled
to the signal by an interaction Hamiltonian HI. The total Hamiltonian is ex-
pressed as [190]

HHS+Hp+HI (14.1)

where Hs is the Hamiltonian of the signal system and HP is that of the probe
apparatus. Heisenberg's equations of motion for Os and Op are

dtOs = -{[H.g, Os] + [HI, OS]}

and

dt
Op -

i
{ [Hp, Op] + [HI, Op] } .

(14.2)

(14.3)

The first commutators in (14.2) and (14.3) describe the free motion of the
operators, whereas the second commutators express the coupling between the
observable (signal) and probe that is designed to measure the observable. In
order that the probe can perform a measurement, the commutator [HI, Op]
must be nonzero, and HI must be a function of O. This does not necessarily
imply that the measurement must affect the observable. Indeed, the com-
mutator [HI, Os] can be zero. In fact, the commutator must be zero if the
measurement is to be of the "nondemolition" kind. But since HI is a func-
tion of Os, it cannot commute with the observables conjugate to O. Hence
a measurement must perturb the variable conjugate to Os.

14.2 A QND Measurement of Photon Number

A QND measurement of photon number can be accomplished by measuring
the phase shift induced in a probe beam by a signal beam, both of which pass
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through a nonlinear Kerr medium (see Fig. 14.1) [191,192]. The two beams
are of different carrier frequencies and are separated via dichroic mirrors that
are reflecting for the signal beam and transmitting for the probe beam. The
probe beam is derived from a source via a beam splitter with reflectivity v
and transmissivity 1 - a2. The intent is to make o, << 1, so that the beam E
is powerful and acts as the local oscillator for detection of the probe beam F.
In the balanced detector, which forms the output of the interferometer, the
beam splitter is a 50/50 one. The probe source is assumed to be in a coherent
state. According to the analysis of Sect. 7.5, beam F is in the coherent state
Iiaa) and beam E in the coherent state 1 --0,2 a).

o 10)

Fig. 14.1. A QND measurement of the photon number of a signal A.

The general operation of the measurement apparatus can be grasped with-
out a detailed analysis. The signal changes the phase of the probe. The energy
in the signal (pulse) does not change, since the Kerr medium is lossless and
thus conserves energy. The signal produces a probe beam imbalance which
is measured by the balanced detector. From the imbalance, the amount of
energy in the signal (i.e. the signal photon number) can be inferred. The
measurement perturbs the conjugate observable of the signal photon num-
ber, namely the phase, via the unavoidable fluctuations in the amplitude
of the probe, which cause index fluctuations in the Kerr medium. Thus, one
would expect that knowledge of the signal photon number results in increased
fluctuations of the phase of the signal.

We have discussed extensively the Kerr nonlinearity, both in its classi-
cal description in Chap. 10 and in its quantum reformulation in Chap. 12.
The Kerr effect produces self-phase modulation of each mode and cross-phase
modulation between the two modes. In an ideal quantum nondemolition mea-
surement, the role of the apparatus is to couple the "signal" observable to
a "probe" observable without affecting the "signal" observable itself. In or-
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der to accomplish such a measurement, the Kerr effect has to be one with a
resonant response in which the index is modulated only when the beat fre-
quency between the two modes lies within the bandwidth of the resonance of
the medium. Thus, if mode A has the resonance frequency wa,, and mode F
the resonance frequency w f, then the index varies at the frequency Wa - Wf,
which is assumed to be the resonance frequency of the medium. We describe
the mode amplitudes by annihilation operators assigned to single modes over
lengths L or time intervals T = L/v9 (see Chap. 6). The Hamiltonian for a
Kerr medium that responds resonantly to optical beats of frequency Wa - Wf
is

ft = hKA3A8FtF . (14.4)

Of course, in order to avoid losses, the excitation frequency must lie in the
wings of the medium resonance, the transitions in the Kerr medium must be
virtual.

Equation (14.4) does not address the issue of the response time of the Kerr
medium. On the face of it, the response appears instantaneous. In Chap. 11,
in connection with the generation of Schrodinger cat states via propagation
in a fiber, we have pointed out the conceptual difficulties associated with
a Kerr medium with an instantaneous response; the zero-point fluctuations
of all frequencies are coupled nonlinearily, provoking a kind of ultraviolet
catastrophe. The investigations in this chapter, starting with the Hamilto-
nian (14.4), do not encounter the same difficulty. The response is resonant,
and thus is spectrally limited. The signal mode As and the probe mode F
may be considered to be modes of a resonator. The interaction is a resonant
interaction via these modes and involves only the spectra of these individual
modes. The only constraint is that the rate of change of these modes is slow
compared with the response rate of the Kerr medium. The equation of motion
for the operator As is

dtA3 = iKFtFA3. (14.5)

Similarly, the equation of motion for mode F is

tF = iKAsA3F . (14.6)

Note that both As As and F1F are constants of motion. Thus, they may be
evaluated at the input to the Kerr medium, at the time t = 0. Integration of
the two equations of motion over the interaction time TK in the Kerr medium
gives

A3(TK) = eiKFtFTKA3(O)
, (14.7)
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P(TK) = eIKAtA,TcF(0)
. (14.8)

The two operators have been phase-shifted by the operator phases OA =
KTKFtF and PF = KTKAtAS, respectively. The probe interferometer in
Fig. 14.1 contains a 90° phase shifter. The scattering matrices of the two
beam splitters have been chosen as

r 1-Q2 io 1

IL iQ V'_1__ Q2

1

Ili]2 i1
The beams G and H at the output of the second beam splitter, with a 50/50
splitting ratio, are

and

(14.9)

(14.10)

We ignore the identical phase shifts in the two arms of the interferometer
since they cancel upon detection. Next we look at the detector charge of
the experimental arrangement of Fig. 14.1. The phase shift is measured by
detecting the phase shifted beam in a balanced detector, with the beam E
acting as the local oscillator. The charge operator of the balanced detector is
then

Q = q(HfH - GtO) = -q(FtEe-s' + (14.11)

Since the beams E and F are in the coherent states 1 - Qty) and lio y),
respectively, the expectation value of the charge operator obtained by tracing
over the measurement apparatus is

(Q)M = 2qQ 1 - o2I (14.12)

If the signal is in a photon eigenstate, F is fluctuation-free. If the signal
is in any other state, there are fluctuations of 1 F that cause fluctuations of
the detector charge (see analysis in next section). Here we shall ignore these
fluctuations, assuming that either the signal is in a photon state or that the
signal beam and its coupling to the probe beam are very weak compared with
the local-oscillator beam.

The mean square fluctuations of the charge are

(QZ) - (Q)2 = g2l'YI2 . (14.13)

This result is obtained by casting the square of the operator Q into normal
order. When this is done, there result terms of fourth order in k and F and
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their Hermitian conjugates, and owing to the use of the commutation relations
there appear terms of second order, Et k and Ft F. Using the properties of
creation and annihilation operators, all terms of fourth order cancel against
-(Q)2. The mean square fluctuations are due to the second-order terms. If
the fluctuations of the phase F are ignored, the difference current has no
induced fluctuations due to q;F and one finds pure shot noise associated with
the sum of the two detector currents, g21-y12.

Equation (14.12) relates the trace of the charge operator over the Hilbert
space of the measurement apparatus to a function of the photon number op-
erator of the signal pulse. If the measurement system has large amplification,
i.e. in the case when ti'/1 - a21y12 >> 1, the charge can be observed on a
macroscopic scale. Furthermore, if the interaction between the signal and the
measurement apparatus is weak, i.e. KTK << 1, we obtain a linear scale for
the photon number operator. Therefore, if the signal has photon states only
up to a number N such that KTKN << 1, then we can linearize (14.12) and
introduce the abbreviation KTK - rc:

(Q)M = 2qv 1 - 2qu 1 - v2Iy2I,cAsAs . (14.14)

The deviation /inA of the signal photon number from a nominal number
nA can be measured only if the fluctuations of the charge are smaller than,
or at most equal to, the change in the charge caused by AnA. From (14.14)
we obtain

4g2012(1 - o2)I'14(1IMFI2) = 4g2o2(1 - g21712
(14.15)

Thus, the smallest change of photon number that can be measured is given
by

(Ian 12) >
1

(14.16)A _ 402(1 - U2)I712Ic2
.

The resolution of the measurement of photon number is the finer the greater
the photon number Iryl2 of the probe beam. An increase in the probe beam
photon number is accompanied by a cost. The larger the photon number in
the probe beam, the greater the fluctuations of the probe photon number nF,
and hence the greater the perturbation of the phase of the signal beam.

The photon number fluctuations in the probe induce phase fluctuations
in the signal with a mean square value

(IZAOAI2) _ Ic2((nF) - (nF)2) = KC2(nF) = K21U7'12 (14.17)

The product of the mean square spread in the measured photon number and
the mean square phase fluctuations induced in the signal is obtained from
(14.15) and (14.15):
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(IanAI2)(Ia0AI2) > 1 (14.18)
4(1 -- a2)

We find that the mean square deviation of the measured photon number
times the mean square phase fluctuations induced by the measurement obeys
the Heisenberg uncertainty relation with an equality sign when v << 1 (see
Appendix A.8). Note that the measurement need not yield the photon num-
ber with precision. The mean square spread of the measured photon number
decreases with increasing probe beam intensity. An accurate measurement
of photon number is only possible for sufficiently high probe beam intensi-
ties that the root mean square noise fluctuations are much smaller than the
difference between the signal registered for nA and nA ± 1 photons. Let us
look at this issue more carefully. We prepare the signal so that it possesses a
definite photon number nA. Then, the charge registered by the apparatus is
g1nA, where 17 is the sensitivity per photon

77 =2v 1-v2Iry2Ir, . (14.19)

For a given signal photon state the detector charge number deviates from
the mean value (14.14) from measurement to measurement with an r.m.s.
deviation 8 = Iryi2. The probability is approximately Gaussian-distributed
when the probe beam is intense. If the observed charge lies in the interval

(Q)M E q[,q(n- 2), 171 n+ 2)J

and we decide that the measured photon number is n, this decision has the
error probability

Perror 2

00

-x l dx
1 2 .b

1,7/2 V2-7r7
e

(14.20)

= erfc

for

77 = 2Q 1 - Q2rcIryI » 1 .
1-YI

The conditional probability that the charge is contained in the above interval
when a state of photon number m has been sent is

77/2

P(nlm) 1 e-[x-n(rn-n)]2/252 dx
-,1/2 27rb

/ e-[r/(m-n)]2/252Pt
27rb

(14.21)

77 e-[n (m-n)]2I2ItiH2 for L >> 1
2 27r

( Y I

1-YI
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In order to be able to resolve the photon number of the signal reliably, the
sensitivity per photon must be much larger than the variance of the noise,
i.e. r) >> 1-fl. For a value of i/I-yj = 10 we get already an error probability as
low as 10-6.

14.3 "Which Path" Experiment

In a Mach-Zehnder interferometer, particles behave like waves and interfere if
no knowledge has been acquired about the path taken in the interferometer. If
one arm of the interferometer is blocked by a detector, the fringes disappear.
A QND measurement in one arm of the interferometer provides knowledge
about the path taken. The virtue of the QND measurement described in the
preceding section is that its sensitivity can be varied from zero (zero-intensity
probe) to perfect sensitivity (the probe is intense enough to distinguish single
photons). Hence, one may study the contrast of the fringes as a function of
the amount of knowledge about the path taken by the photon(s). In this way,
the QND measurement permits a variety of choices with regard to the amount
of knowledge gained as to which path the photons have taken. This should be
contrasted with the either/or situation in which either a measurement is made
with a photodetector of the photons in one arm or no knowledge is acquired at
all. Figure 14.2 shows the setup. The Mach-Zehnder interferometer contains
a phase shifter in one arm and a QND measurement apparatus in the other
arm. It is excited by a coherent state in input (a) and vacuum in input (b).
The difference current of the two detectors illuminated by the outputs E and
F is measured. The difference current is recorded as a function of the phase
shift 0. Of interest is the change of the fringe contrast of the difference current
with increasing intensity of the probe G. The excitations in the two arms, C
and D, are

6= 1 (A + iB) , (14.22)

D= I (iA+B). (14.23)

The excitations C and D are phase-shifted and then combined at the output
beam splitter into the outputs E and F:

E _ (e`BD + ie`0`7C) , (14.24)

E _ (iei°D + (14.25)
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Fig. 14.2. Interferometer with photon measurement in one arm

where the induced phase shift PG is given by G = r,nG. The difference
charge is

Q = q(EtE - FtF) = qi ei(B-"G)ctb) (14.26)

In order to evaluate the expectation value of the charge, we need the expec-
tation value of the function exp(iG). The probe G is assumed to be in a
coherent state with a Poissonian probability distribution of photons:

1 n n iKne- e
n!

n

e-(nG)
1

((nG)ei.)n1: n!
n

= e-(nc){1-[cos(k)+isin(r.)!}

(14.27)

When this expression is introduced into the expectation value of the charge,
we find:

(Q) = qe-(nc)[1-cos(n,)] Ial2 sin[O + (nG) sin(/L)] . (14.28)

Figure 14.3a shows the fringe contrast as a function of the Kerr nonlinearity
n = KTK for a fixed average probe photon number (nG) = 1. From the



14.3 "Which Path" Experiment 483

Fig. 14.3. Fringe contrast as a function of is and B. The ordinate is
(a) (nc) = 1; (b) (nc) = 3

Fig. 14.4. Fringe contrast for (nc) = 3 and a larger range of rc

(Q)/(q aj2)

analysis of the preceding section we know that single photons can be dis-
tinguished when 2n (nG) >> 1. When this becomes possible, the photons
behave as particles and thus the fringe pattern disappears when K >> 0.5, as
can be seen from the figure.

An interesting property of (14.28) does not show up in these two graphs.
Figure 14.4 is plotted for a larger range of rc values. This graph shows a
reappearance of the fringes. The reason for this is not hard to find. When
r, = 21r, every signal photon shifts the interferometer phase by a multiple of
27r, so that no information as to the number of the signal photons can be
obtained. Under this condition, the beat pattern reappears. It is of interest
to determine the fluctuations of the measurement variable Q. We have
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(Q)2

= g2(CtCDDt + DtDCCY - e-2i(9-qSa)C2Dt2)

+ g2(e,(e-kc)Ctl -

q2
[I2 + 4IaI4e2i0((e-2i45c) - (e

4IaI4e-2ie ((e2i c) - (ei45c)2)}

(14.29)

where we have set arg(a) = 0. The noise is shown in Fig. 14.5. The noise
is shot noise due to the signal beam, except near the phase shifts of 9 = 0
and 2-7r. At these angles, the probe contributes significantly to the noise by
interfering with the signal.

Fig. 14.5. The mean square fluctuations of the charge as a function of rc and 0;
(na) = 5. The fluctuations are normalized to g21aI2

14.4 The "Collapse" of the Density Matrix

In Sect. 14.2 we used the Heisenberg representation and derived the charge
operator for a QND measurement of photon number. From the statistical
distribution of the charge we were able to infer the choice of parameters
necessary to measure the photon number of a signal beam. In this section we
study the evolution of the wave function [191,192]. The system wave function
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starts out in a product state of the signal, of the probe in a coherent state at
port (c), and of a vacuum state entering through port (d):

101 = I0s ®I7>c ®I0)d (14.30)

In the Heisenberg representation, the operators evolve as one proceeds
through the system. The analogy with the classical propagation of wavepack-
ets through the system is unmistakable. At any cross section, the different
beams are identified by the corresponding operators. In the specific case of
Fig. 14.1, we assigned different letters to the operators at different cross sec-
tions. In the Schrodinger representation, the operators remain fixed, whereas
the wave functions evolve with time. Passage through any element of the
system changes the wave function. In order to clarify the notation used in
this section, let us look in more detail at the passage of the wave function
through the first beam splitter, the passage from reference cross section I to
reference cross section II (see Fig 14.6). The product state (14.30) remains a
product state, since IV),) is unaffected, and a beam splitter preserves product
states of coherent states. After the beam splitter, the wave function is

>s®I 1-0'27)c(9 (iO7)d

0

IV

(c)

(14.31)

(d) I1O)d

Fig. 14.6. Schematic of QND measurement for the Schrodinger representation

The coherent state I 1 - o,27) is assigned to arm (e) of the interferometer,
according to the definition of the beam splitter ratio. Note that we retain the
subscripts "c" and "d" to indicate the port at which the wave function was
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defined originally. Since the operators remain unchanged in the Schrodinger
representation, the subscripts indicate which operators operate on which wave
function. Thus, if we asked for the photon number in arm (e) of Fig. 14.6, we
would form the following expectation value:

II(OI&0l7P)II

= c( 1 - a2yICfOI 1 - Q2ry)c = (1 -
0,2)IyI2

. (14.32)

This example illustrates the notation used as we proceed through the nonlin-
ear interferometer. After passage of the signal and probe beam (d) through
the Kerr medium the state is

Iw)III =
eik4sA9DiDIY')s ®I 1 - Q2y)c ®IiO'Y)d , (14.33)

where the operator exp(ircAsA3DtD) represents the interaction in the Kerr
medium. We now write the signal state in the photon number representation:

I*). = EcnIn)3 . (14.34)
n

Action upon IL3) by the operator exp(i,cAsA8Dt1) produces

eikAI As bt D I, ') = Cn l n)
eikns Di D

s s
n

(14.35)

Next, consider the operation of eir'nj)t' on the coherent state IiQy)d
I S)d. We express I6)d in the photon number representation and operate on it
with the operator exp(ircn3DtD):

eirn,DiD e- 1812/2 S

I n)d
= eiknende-IbI2/2 SIn)d

nd

2
(6einns)nd

e-Ibl /2 Ind) = Iseikns)d
.

nd.
nd.

(14.36)

The coherent wave function has been multiplied by exp(iicns). When this
result is introduced into (14.33) we find

W)III = Gnln)3 (9 I 1 - Q21)c (9 Iioei nsy)d (14.37)
n

Every component of the signal wave function written in terms of photon
number states has one associated coherent state that has been phase-shifted
by the phase rcn3. Finally, we phase-shift beam (d) by 90° and propagate the
wave functions through the output beam splitter with a 50/50 splitting ratio
to obtain
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I`')IV = EcnIn)., ( 1 - U2 - iaeinn.),,

C

(14.38)

-(1 1 - Q2 -
d

With the signal in a photon state, cm = 1 and cn = 0 for m 54 n, and the
system is in the simple product state

IY')IV = Cmlm)s ®

72
(i 1 - a2 - Ueinm)y)

d

_ (v`1 - o,2 - iae"),1,\

v2 /c
(14.39)

In the general case (14.38), however, the wave function is in an entangled
state; the wavefunction is a sum over product states. Note that each of the
signal photon number states is associated with a pair of characteristic co-
herent states involving phase shifts proportional to the photon number, the
factors ei"ne. If the probe intensity IyI2 is large enough, these coherent states
do not overlap in the y plane. A measurement of the probe by the balanced
detector can resolve individual photons. The overlap of the probe wave func-
tions is expressed conveniently in terms of the density matrix. The density
matrix is (Appendix A.10)

p = 1,P) IV IV (I = EcmcnIm)s s(nI
m,n

-( 1 - U2 - Kw1 - Q2 -/c
VG

(i 1 - a2 - Ue"m)y)d
d \

(iv/'l - a2 - ae1rn)

(14.40)

It is of interest to ask for the reduced density matrix obtained from p by
tracing it over the probe beams that are to be detected by the two detectors.
We have

PR = Tfc,d (P) CmCnl m)s s(nlRm,n,cRm,n,d , (14.41)
m,n

where Rm,n,c and R,,,,,n,d are the reduction factors

\
V2 V2_

Rm n c c
\ _(

1 - U2 - ( V 1 1 - U2 - iaeit.m)y/
,
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14.1.1d = d (1 1 - U2 - (1 1 - Q2 -
/d

Next, we show that the reduction factors approach Kronecker deltas when
the probe intensity is made large. The reduction factors involve the scalar
product of two coherent states. Now, it is easy to show that

(alf) = exp -2 (IaI2 + 1/312 - 2a*0) . (14.42)

Indeed,

(al )3) = -Ia12/2
a*n (nI E,-J012/2 Qm

`n' n! m m!

= e-(Ia12+1012)/2 (a*/O)
n!

n

= e(II2+1012-2a'0)/2

Thus we obtain for the reduction factors

(14.43)

Rm,n,c = Rm,n,d = exp - 2 IyI2[1 - cos r, (m - n)]e'Om^ (14.44)

with

Omn
22

La 1 --o-2 (cos in - cos icm) + a2 sin ic(m - n)] . (14.45)

For I i(m - n) I << 1 we may expand Rm,n,c and Rm,n,d:

z

IRm,n,cl = IRm,n,dl «exp-Ia2I lc2(m-n)2, (14.46)

which can be made to approach a Kronecker delta when I,Qy/2I >> 1 (com-
pare with (14.20)). In this limit, the reduced density matrix becomes diagonal:

PR = E Icn12In)s s(nl .
n

(14.47)

A trace over the probe takes an average over all probe measurements. The
state of the signal as inferred from the probe measurements is represented
by a diagonal density matrix that can be interpreted as a superposition of
signal number states occurring with probabilities p(n) = Ic,iI2.

We have seen in Sect. 14.2 that single photons can be distinguished when
the sensitivity per photon, 71, is much greater than the amplitude of the probe:

1- Q2r.I-r12
>> IVyI

IM)
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It follows that an accurate measurement of the photon number collapses the
reduced density matrix into diagonal form. Further, we observe that the col-
lapse of the density matrix is not sudden; it requires the time necessary for
the QND measurement to take place. Finally, it should be noted that the
collapse is not truly total. Indeed, if we did not carry out the measurement
and did not trace over the measurement apparatus, we could propagate the
density matrix through another nonlinear Mach-Zehnder interferometer with
a Hamiltonian that was the inverse of the Hamiltonian of the first Mach-
Zehnder interferometer, as shown in Fig. 14.7. The second Mach-Zehnder
interferometer has a Kerr medium of negative Kerr coefficient, equal in mag-
nitude to that of the first. After the passage through both interferometers,
the original input state is recovered. This shows that the full information of
the input state is still contained in the density matrix of the signal and probe,
even though the reduced density matrix appears diagonal.

This finding deserves more attention. In the setup of Fig. 14.7 the probe
is not detected. The balanced detector has its own Hamiltonian evolution,
in which the photons generate carriers. Could one recover the original state
by transforming the density matrix through a Hamiltonian inverse to that of
the balanced detector? A Hamiltonian inverse to that of the detector would
take the carriers generated by the photons and use them to emit coherent

NO

10)

Fig. 14.7. Nonlinear interferometer followed by its inverse
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light. Such a system boggles the imagination. The reason that this appears so
difficult to realize is because detection is an irreversible process. But the ob-
jection could still be made that quantum mechanics is reversible at the truly
basic level. In principle one ought to be able to construct a Hamiltonian in-
verse to that of the detector. Here we touch on an issue that is analogous
to the discovery of Poincare cycles in statistical mechanics. Boltzmann's H
theorem, which served as the underpinning of the entropy increase in statisti-
cal mechanics, was put into question by the existence of Poincare cycles, i.e.
by the proof that a system can and will return to its initial state arbitrarily
closely if left to evolve long enough. It turned out that systems of any com-
plexity take astronomic times for the completion of a cycle. So, the Poincare
cycles seem to be an artifact that has no bearing on the evolution of a system
over reasonable lengths of time. The situation in quantum mechanics seems
to be analogous. An inverse Hamiltonian may in fact exist for any physical
system. But if the system is of any complexity, the evolution via the inverse
Hamiltonian will take times that are too long to affect predictions for the
foreseeable future.

In the next section we shall consider two QND measurements of photons in
cascade and shall derive the conditional probability of measuring m photons
in the second apparatus when n photons have been measured by the first.
The conditional probability will enable us to make further inferences on the
effect of an individual measurement event.

14.5 Two Quantum Nondemolition Measurements
in Cascade

In his mathematical formulation of quantum mechanics, von Neumann intro-
duced into quantum mechanics a discontinuous evolution of the Schrodinger
wave function [8] with his projection postulate. This states that the measure-
ment process projects the measured state of the observable into an eigenstate
of the measurement equipment. However, this postulate raises some funda-
mental questions. How does this sudden projection take place? Further, the
postulate assigns meaning to the outcome of a single measurement, whereas
quantum theory, in the statistical interpretation of Max Born, predicts prob-
abilities of outcomes, and not the outcome of a single measurement.

In Sect. 14.4 we showed that a measurement puts the density matrix
traced over the measurement apparatus into diagonal form, thus permitting
a classical probabilistic interpretation of the outcome of the measurement.
The derivation also made it clear that the process is a continuous one evolv-
ing during the process of measurement, not a sudden "collapse" into diag-
onal form. No observer need be present; the diagonalization is caused by
the measurement apparatus. In this section we broach the question as to
whether meaning can be attached to a single measurement event in the spirit
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of von Neumann's postulate, in contrast to Born's probabilistic interpreta-
tion of quantum mechanics as a predictor of the probability of the outcomes
of measurements on an ensemble of identically prepared systems. We answer
this question by studying two QND measurements in cascade. As before, we
quantize the measurement apparatus. We evaluate the conditional probabil-
ity of measuring n photons in the second measurement if m photons have
been measured in the first. We shall be able to show that this conditional
probability approaches a Kronecker delta With this result we shall ac-
complish a kind of "proof" of the von Neumann postulate. We shall not, in
fact, show that the measurement projects the state of the observable into
an eigenstate. Quantum theory, within its statistical interpretation, is not
equipped to arrive at such a conclusion. However, by showing that the condi-
tional probability is a Kronecker delta, we have proven that a measurement
of n in the first apparatus is followed with certainty by a measurement of n
in the second apparatus. For all practical purposes (to paraphrase Bell), an
intelligent observer of the first measurement can set up his or her calculations
predicting the outcome of a further experiment by assuming that the state of
the observable is in the eigenstate n after the first measurement apparatus.

Fig. 14.8. Two QND measurements in cascade

By a method analogous to the analysis of the preceding section, we may
derive the state of the entire system by following the input product wave
function through the system (see Fig. 14.8). We assume that the two QND
measurements are identical and that the probe beams are in coherent states
1yl) and 1y2), respectively. The initial wave function is the product state

I'))I = I0)sb'Y1).i 0 IO)dl (9 I'Y2)c2 0 (0)d2 . (14.48)

After passage through both systems, the wave function is
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I'G)IV2 = EcnIn)s
m,n

dl

® (vi - Q2 - lUeikn) 72)C2
J

®
(

- 0,2 - Qeikn72 )
J / d2

(14.49)

From the above one may form a density matrix and proceed through the
same steps as before, by tracing it over the equipment. It is clear that af-
ter the double measurement the reduced density matrix is still of the form
(14.47) if the probe beams satisfy the conditions for (practically) error-free
measurements of the individual photon states:

PR = E IcnI2In)s s(nI . (14.50)
n

The probability distribution of the second measurement is the same as
that of the first. This finding determines the conditional probability of mea-
suring n photons in the second measurement if m photons have been mea-
sured in the first. Indeed, the probability distribution of the second measure-
ment is

P2(n) = Ep(nlm)pl(m) .
M

If and only if the conditional probability is a Kronecker delta,

(14.51)

p(njm) = bmn , (14.52)

can we have

p2(n) = pi(n), (14.53)

as is the case here.
When the gain of the QND measurement apparatus is not high enough,

i.e.

aiI7I<1,
then the QND measurement does not have perfect resolution; no classical
interpretation of the outcome of the interaction of the signal with the mea-
surement apparatus is possible.

`
(vi - U2 - 171

)C1V2_ J
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14.6 The Schrodinger Cat Thought Experiment

Schrodinger devised a thought experiment in order to demonstrate the
strangeness of quantum states when set in a classical environment. We de-
scribe here a version of the experiment presented by John Gribbin in his book
Schrodinger Kittens and the Search for Reality [193]. The entire operation
takes place in an enclosure that is inaccessible to outside inspection. An elec-
tron is put into a closed box inside the enclosure. A partition is introduced
into the box, dividing it into two compartments of equal volume. The elec-
tron is now in a coherent superposition of states "left" and "right". Next,
the left side of the box is opened to let the electron, if present, escape into
the larger enclosure containing the box. This enclosure contains an electron
detector which, when triggered by the electron, will flood the enclosure with
a poisonous gas. A cat trapped in the enclosure is killed by exposure to the
gas. The paradox is that the electron is in a quantum mechanical superposi-
tion state, or so it is asserted. It follows from this assertion that the cat is in
a superposition state of being either dead or alive. Its state is not determined
until the box is opened by an outside observer.

This scenario has been the source of much controversy. Here we shall argue
that the system is not in a quantum superposition state when the poison gas
is released. Briefly stated, we shall show that the detection process of the
particle (the electron in the above scenario) destroys the quantum nature
of the state. We shall also argue that no additional observation is necessary
to determine the probability of the cat's demise. The enclosure can remain
closed. The analysis will be carried out in a scenario in which the particle in
question is a photon, not an electron, because we can base the analysis on
the simple formalisms developed in the preceding sections.

It should be stated at the outset that we do not imply that Schrodinger cat
states are inconsistent with quantum mechanics. Much recent work has been
done on the generation of more and more sophisticated quantum mechanical
superposition states, which have been called by this name. The thrust of our
argument is that the apparatus necessary to kill a macroscopic cat destroys
the superposition, i.e. puts the density matrix of the system into diagonal
form.

First, let us define the scenario that we shall analyze. We start with
the famous enclosure and do not permit inspection of its contents after the
experiment has been initiated. A single photon is passed through a beam
splitter (see Fig. 14.9). At the output reference plane of the beam splitter
the quantum state is in a superposition of the states 11)a10)b and 10)a11)b.
A quantum nondemolition apparatus is attached to port (c) to determine
whether the photon appears in that port (Fig. 14.10). When the passage of the
photon is detected, the deadly contraption is activated. We shall show that
the detection of the passage of the photon removes the quantum coherence.
The passage of a photon through a beam splitter that couples the two entering
radiations has been analyzed in Sect. 7.3. With proper choice of IMIT and 0,
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(a)

A

IW)in =I1)aIO)b .

IO)b ,
(b)

B

(c)

IW)$ = {I1)aI0)b - '10).1%)

(d)

D

Fig. 14.9. Entangled state generated by passage of photon state through beam

splitter

(a)

Fig. 14.10. The detection apparatus for the Schrodinger cat experiment considered
here
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we can put the signal into the state

I4'); = (I1)aI0)b - i10)aIl)b) (14.54)

The evolution of the entangled state through the measurement apparatus
need not be reanalyzed in detail. Indeed, Sect. 14.4 takes the state c., I m)

through the nonlinear interferometer, ending up at plane IV with the wave
function (14.39). In the present case we take the states I1)a10)b and I0)aIl)b
through the system. The Schrodinger evolution is linear; a sum of two states
evolves as the sum of the individual evolutions. We may use the previous
results if we interpret properly the nature of these two states. First of all,
we note that the state I1)aI0)b implies that the photon has gone through
the beam splitter and stayed in the output port that impinges on the QND
apparatus. This state will unbalance the interferometer. The state I0)a11)b
corresponds to a photon in the other output port of the beam splitter, which
does not feed into the interferometer. Thus, using (14.39), we derive the state
at plane IV:

I'G)IV = 1/v M. (9 Io)b ® I1/\/(v"1 - u2,1, - ive"`7))c

0I11V2 (i 1 - very - ve"`7))d
(14.55)

-1//iIO)a (9 I1)b X I1/V( 1 - very - iay))c

(9I1/V'2 (W l - very - v7))d

The wave function is in an entangled state. We study the density matrix

P = IV(bI

= 1/2 I1)a .(l1 ®IO)b b(01 ® Raa,cc (9 Rba,dd

- 1/2 ill), a(OI (9 10)b b(l1 0 Rab,cc 0 Rab,dd

+ 1/2 i10), a(ll 0 I1)b b(0I ® Rba,cc (9 Rba,dd

+ 1/2 I0)a .(0I (9 I1)b b(1I (9 Rbb,cc (9 Rbb,dd

with

Raa,cc =
2

( 1 - v2 - ive")ry )c
c

((i - v2 - iae")7

(14.56)

= Rab,cc = Rba,cc = Rbb,cc
(14.57)
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and

1
Raa,dd =

2
Q2 - Qe")^Y

d d (V 2 (IV

= Rab,dd = Rba,dd = Rbb,dd

- ve,k)-Y

(14.58)

Detection calls for tracing over the measurement apparatus. The partial trace
over the density matrix (14.56) is carried out as before, using (14.42):

Tr(Rab,cc) = Tr(Rba,cc)* = Tr(Rab,dd) = Tr(Rba,dd)*

Q2
14.59()

= exp (-
2

H2[1 - cos(rc)1 } exp(io) ,

with 0 = Iy2/2I [Q l -- cr2(cos c - 1) - C2 sin rc].
The requirement that the off-diagonal elements of the density matrix van-

ish is:

a2IyI2(1 - cos rc)/2 = Q2I'YI2 sin2(ic/2) >> 1 . (14.60)

When this inequality is obeyed, the reduced matrix becomes diagonal

Tr(P) = 1(I1)a a(1I ®IO)b b(OI + IO)a a(0I ® 11)b b(1I) . (14.61)

The requirement is that the apparatus uses a sufficient number of photons
that a significant phase shift is produced by one single signal photon.

The apparatus is noisy. If a decision has to be made whether a photon
has passed or not, the signal must be much larger than the noise. Now we
show that a good signal-to-noise ratio is only achieved when the inequality
(14.60) is satisfied, i.e. when the reduced density matrix is diagonal.

The expectation value of the charge is

Iv(V)IQI&)IV = QIV(" ICtC- DtDI b)Iv . (14.62)

The charge will fluctuate if the signal fluctuates, but it already has fluctua-
tions solely because the apparatus is excited with a coherent-state probe. In
the absence of a signal the wave function is

Iro)IV = [10)a®10)b®

®

vf2-\
1-v2-ivy)

-(1 1 - a2 - Q)y/d]

C

(14.63)

We find for the charge
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IV(YboIQI'Yo)Iv = 0, (14.64)

and for the mean square fluctuations

IV( .j 'I4'o)IV = g2I7I2 . (14.65)

In the presence of a signal, represented by the wave function (14.55), the
charge is

IV(V5IQIV))IV = gQ 1 - al sin 4Iryl2
.

The signal-to-noise ratio is

SNR = IV (01 IV N a2(1 - 0,2)1 711 sin 2 IG .

IV (VI. I Q 1'0) V

(14.66)

(14.67)

If the signal-to-noise ratio is to be made much greater than one, we require

X2(1 - v2)IryI2 sin2 . > 1 . (14.68)

This is essentially the same condition as required for the collapse of the
density matrix.

Tracing over a subsystem performs an average over all the states of the
subsystem. Tracing over the measurement apparatus thus expresses an aver-
age taken over all measurements. The fact that the reduced density matrix
decoheres (becomes diagonal) for system parameters that yield a large signal-
to-noise ratio, and thus provide accuracy of the measurement, shows that the
cat cannot be in a superposition state of dead or alive. When the system is
able to decide that a photon has passed through the measurement apparatus,
the reduced density matrix is rendered diagonal.

14.7 Summary

We have taken the point of view that quantum theory is a statistical theory
that predicts only the outcome of an ensemble of measurements. The out-
come of a single measurement is described only probabilistically. In this sense
quantum theory resembles statistical mechanics, in which detailed knowledge
of the initial state of the system is unavailable because of the complexity of
a system with many degrees of freedom. In the case of quantum theory, the
detailed knowledge of the initial state is unavailable in principle, because
of Heisenberg's uncertainty principle. Born espoused this interpretation of
quantum theory. In his book Natural Philosophy of Cause and Chance [54],
he approached his probabilistic interpretation of quantum theory with the
following words:

"Now the curious situation arises after this code of rules (of science),
which ensures the possibility of scientific laws, in particular of the cause
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effect relations, contains besides many other prescriptions those related to
observational errors, a branch of theory of probability. This shows that the
conception of chance enters into the first steps of scientific activity, by virtue
of the fact that no observation is absolutely correct. I think chance is a
more fundamental conception than causality; for whether in a concrete case
a cause-effect relation holds or not can only be judged by applying the laws
of chance to observations."

With this probabilistic interpretation of quantum mechanics, we stud-
ied the properties of quantum nondemolition measurements, quantizing the
measurement apparatus as well. We showed that a QND measurement of pho-
ton number can be carried out while imparting no more than the minimum
uncertainty to the measured signal as required by Heisenberg's uncertainty
principle. With a QND measurement apparatus in one arm of an interferom-
eter, we could show the gradual disappearance of the fringes in proportion to
the degree of knowledge that could be gained about the photon number by
the measurement.

We have shown that the density matrix of the system composed of the
observable (the signal photon number) and the QND measurement appa-
ratus, traced over the measurement apparatus, becomes diagonal when the
number of signal photons passing through the measurement apparatus can
be discerned. Next, we found from the study of two QND measurements in
cascade that the conditional probability of measuring m photons in the sec-
ond measurement when n photons have been measured in the first apparatus
approaches a Kronecker delta if both measurements are performed with suf-
ficient accuracy. This is consistent with the von Neumann postulate stating
that a measurement casts the state of the observable into an eigenstate of
the measurement apparatus. It is not a proof of the postulate, but only sug-
gests that an intelligent observer could predict the outcome of the second
measurement by assuming that the observable is in the photon eigenstate In)
if n photons were observed by the first apparatus.

Finally, we addressed the Schrodinger cat paradox. A photon was put into
an entangled state which was passed through a measurement apparatus. If the
apparatus, which triggered a contraption that killed the cat, was to register
the passage of a photon, then we found that the measurement destroyed the
entangled state. The photon was registered with a probability of 1/2; the
probability of the cat being dead was 1/2, the probability of it being alive
was 1/2.

Problems

14.1 Redo the calculations of Sect. 14.3 for the "which path" experiment
with one QND measurement in each arm. The two probe beams are of equal
intensities.
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14.2* A Schrodinger cat state N(Ia) + I - a)) is incident upon an ideal
photodetector. What are the photon statistics? Assume a to be real and
positive.

14.3* The state Ia)I0) is incident upon a beam splitter characterized by
MT = ¢. Each output port is fed into an ideal detector. Find the probability
generating function of the photon count. Find the joint probabilities.

14.4 The state 11)11) is incident upon a 50/50 beam splitter. Each output
port has a detector. Find the joint probability generating function. Determine
the joint probability distribution.

14.5 The state 12)10) is incident upon a beam splitter characterized by
MT = 0. Each output port is fed into an ideal detector. Find the proba-
bility generating function of the photon count. Find the joint probabilities.

14.6* Find the output state when a Schrodinger cat state N(Ia) + I - a)),
with a real and positive, is incident upon a beam splitter, with vacuum inci-
dent upon the other port.

14.7 The output state of the preceding problem is detected by two ideal
detectors. Find the probabilities of the photon count in the two detectors.

14.8 Derive the probability generating function for the process of the pre-
ceding problem.

14.9 Find the falling-factorial-moment generating function for the preceding
two problems.

14.10 What is the probability p(m) of detecting m photons with the de-
tector in output (1) of Prob. 14.7. Determine its falling-factorial-moment
distribution.

14.11 Derive the falling factorial moment of the preceding problem by the
method of Sect. 9.2.

Solutions

14.2 We start with the falling-factorial-moment-generating function

(V)IAtrArlVG)6r

R

where IV)) = N(Ia)+I -a)). Note that a is real and positive. Since
we find for 1/N2

1 NZ= ((a1 + (-aI)(I a) + I - a))

(0I0) = 1,

= 1+1+2(aI -a) =2(1+e_2I«I2) .
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The rth element of contains

(VGIAtrAri7G) = [ar(aI + (-a)r(-aIJ (-a)rl - a)1

= 21a12r + (-1)r2lal2re-21a12

We obtain

1 e-EI«I2e-21x121
1

+,21,,,.
\\ J

The probability generating function is

F(C - 1) =
cosh(eIaI2)

coshlal2

We can check that P(1) = 1, as it must be. The probabilities are proportional
to

IaI2n

n!
for n even, and are zero for n odd. Only even photon numbers are detected.
14.3 The output state is

IVG(T))=I7)Ia),
with

7 = a cos q5 - i /3 sin o , 6 = -i a sin 0 + /3 cos 0 .

The falling-factorial-moment generating function is

rl) = `AtPAPBt9B9)

P,q p!q
We find for the expectation value

(AtPAPBtgbq) = I7I2PIaI2q .

The falling-factorial-generating function becomes

E (I7I26)P(I6I277)g = eXP(I7I2e) exp(IaI2ij) .

P,q p!q!

The probability generating function is:

77) = F( -1, 77 -1) = eXP(-I7I2) exP(-IaI2) exp(I6I2q)

We find for the probabilities

P(m, n) = p(m)p(n) = I7I2m e-I7I2 IaI2n a-Ibl2
m! n!

The counts in the two detectors are independent and Poisson-distributed.
This is consistent with the interpretation in which two Poisson-distributed
signals are acted upon by a binomial process. The binomial process preserves
Poisson distributions! The two distributions are statistically independent; the
detections are uncorrelated.
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14.6 The cat state is a superposition of two coherent states. We can take ad-
vantage of the simple transformation law for a coherent state passing through
a beam splitter. If the beam splitter matrix is

rtl with t=-i 1-r2,j tr1
the output state is

IV)) = N(Ira)Ita) + I - ra)l - ta))





Epilogue

The topics discussed in this book reflect one of my main research interests
over 48 years at MIT. The progress from the study of electromagnetic noise
in electronic amplifiers to the investigation of noise in optical amplifiers was
motivated by the fact that electronic amplifiers do not possess a fundamental
limit on their "noise measure", whereas optical amplifiers do. The empha-
sis on practical engineering amplifiers and systems that operate with a large
number of photons (50 photons per bit or more) permits the use of the lin-
earization approximation, in which the noise is additive to the signal. Within
this approximation, the phenomena can be explained by a semiclassical the-
ory that is in close analogy with classical physics. One may attach "physical
reality" to an observable, the signal, in the absence of the measurement.
Fluctuations in the measured observable are attributed to the additive noise
of the measurement apparatus and the noise (uncertainty) "accompanying"
the signal. In order to illustrate situations in which this simple picture fails,
we looked at a few examples involving photon states of a few photons. In
these cases the Wigner function ceases to be positive definite, no classical
joint-probability description is feasible in such cases. The noise is not addi-
tive. "Physical reality" can be defined only after a full specification of the
measurement apparatus.

Fluctuations set limits to the accuracy of measurements and the distances
of reliable communications. Quantum mechanics is intimately connected with
uncertainty, which manifests itself through fundamental, unavoidable noise.
A single quantum observable can be measured, in principle, without uncer-
tainty. If the observable is prepared in an eigenstate of the measurement ap-
paratus, every ideal measurement yields the same value, the eigenvalue of the
state. Linear amplifiers permit the simultaneous measurement of the in-phase
and quadrature components of the electric field, two noncommuting observ-
ables. Such amplifiers must add unavoidable noise to the measurement. Fiber
amplifiers operate very near the fundamental limit set by quantum mechan-
ics on the uncertainty of a simultaneous measurement of two noncommut-
ing variables. Even though fiber communications today utilize only intensity
modulation, and hence phase-sensitive parametric amplification could be em-
ployed without adding noise in the amplification process, long-distance fiber
communications will not be able to utilize this form of amplification. The
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technical difficulties of locking the amplifier phase to the signal phase, which
is randomized by environmentally imposed fluctuations, are too severe.

The study of optical amplifiers led us to a discussion of the noise figure.
The definition of noise figure currently in use is based on signal-to-noise ratios
defined after optical detection. This definition does not take advantage of the
fact that optical amplifiers are linear amplifiers of the electromagnetic field.
The definition employed for linear electronic amplifiers can be adapted for
optical amplifiers. Time will tell whether engineering practice will find this
alternative definition better suited for measurement and prediction of the
noise performance of optical-amplifier systems. The author prefers it, since
it meshes well with the concept of noise measure that proved so useful in the
discussion of electronic-amplifier performance.

We concluded with a detailed description of an optical quantum measure-
ment. The groundwork was laid with an analysis of squeezing. The Hamil-
tonian of a signal and a probe interacting in a Kerr medium was developed
and justified as a self-consistent model of a measurement apparatus. No lin-
earization approximation was used. Several key interpretations of a quantum
measurement were proffered:

(a) The measurement occupies a finite time interval and leads to an entan-
glement of the wave functions of the observable and of the apparatus.

(b) Tracing over the measurement apparatus at the end of this time interval
leads to a diagonal reduced density matrix.

(c) The conditional probability of observing the same outcome in two quan-
tum nondemolition experiments in cascade is unity.

(d) This fact entitles an intelligent observer to predict outcomes of future
measurements by an analysis that starts with the observable in an eigen-
state of the measurement apparatus, as if the measurement had projected
the state of the observable into an eigenstate of the measurement appa-
ratus.

(e) Finally, it is the author's view, shared by many physicists, that quantum
theory is fundamentally a probabilistic theory that is complete in the
sense defined by John Bell.

Some readers may see, find, or know of better ways to address these important
issues. I have tried to do my best and I feel privileged that I have been given
the opportunity to assemble these ideas,

"verso la fine del cammin di nostra vita".



Appendices

A.1 Phase Velocity and Group Velocity
of a Gaussian Beam

A diffracting Gaussian beam experiences a phase advance 0 = tan-1 (z/b)
in addition to the plane-wave phase delay kz. The net phase delay is thus
kz - 0 = kz - tan-1 (z/b). The phase advance has a limit of a value of 7r/2
for large values of z/b. Hence, at large values of z, the propagation constant
approaches k, and the phase velocity and group velocity approach c. On the
other hand, for small values of z the net phase delay is a linear function of
z, giving the effective propagation constant

1 A w c 2feff=k-=k- =--- (A.1.1)
b 7rw2

Thus, the phase velocity is

c w w2

w c_ =
(A 1 2)VP

Qeff 1 - 2c2/w2w2
. .

The phase velocity is greater than the speed of light. On the other hand, the
inverse group velocity is

1 dpeff d w 2 c2 1 2 c2
vy = dw = dw (c w2 w) = c + w2 w2 '

(A.1.3)

and the group velocity is

c
Vg

1 + 2 c2/w2 w2
(A.1.4)

To the order \2/7r2w2, the product of the group velocity and phase velocity
is equal to the speed of light squared:

7V9VP = C.. (A.1.5)

This is the order to which the paraxial wave approximation is valid. The
reader will note that (A.1.5) holds rigorously for the dispersion of metallic
waveguides discussed in Chap. 2.
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A.2 The Hermite Gaussians
and Their Defining Equation

A.2.1 The Defining Equation of Hermite Gaussians

The Hermite Gaussian functions are best understood with the aid of the
differential equation for which they form a complete set of solutions, the
Schrodinger equation of the one-dimensional quantum mechanical harmonic
oscillator [194-196], which is, in normalized form,

d2o + (A X2)0 = 0 (A.2.1)

An orthogonal set of functions V)rn(C) of a single independent variable is
generated by this differential equation in the sense that

00

0m(e)0* (S) dS = 0
-00

form54 n. (A.2.2)

To prove this, and gain further understanding of the solutions of (A.2.1), we
study the geometric interpretation of (A.2.1) by means of Fig. A.2.1. Because
the coefficients of (A.2.1) are symmetric with respect to , the solutions must
be either symmetric or antisymmetric. A symmetric solution that starts out
from the center, = 0, with zero slope has a prescribed slope and curva-
ture for ever after, going to the right, as determined by the second-order
differential equation. The solution will be concave toward the axis in region
I and convex in region II. It will shoot off toward ±oo as -* oo, unless
A is carefully chosen - at the so-called eigenvalue of A corresponding to a
bounded solution. The lowest-order solution has the lowest curvature, the
lowest eigenvalue, and only one extremum. It is the Gaussian e-g2/2, with

Fig. A.2.1. Regions of positive and negative net energy
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A = 1. The next solution is antisymmetric with two extrema, the following
one is symmetric with three extrema, and so forth.

Next, we investigate how the higher-order solutions are related to the
lower-order ones. For this purpose it is convenient to introduce the "creation"
and "annihilation" operators, or "raising" and "lowering" operators, d/dl;
where the - sign goes with raising and the + sign with lowering. Consider
a function 0(6) which is assumed to obey (A.2.1) and which vanishes for
6 -p ±oo. Operate on (A.2.1) with d/d + 6 and rearrange the terms so that
(d/d6 ) is brought to the right of d2/d1;2 and 62. For this purpose we note
that

d 2 d2l
C

dl;
l <2

2

I (da ) 0] f 2

CdST T5

(A.2.3)

(A.2.4)

Using (A.2.3) and (A.2.4) in (A.2.1) operated on by d/d + , we obtain

d62 Kd )0J + [(, f 2) - 2] [
\ dd + ) 01 = 0. (A.2.5)

We have recovered the original equation, where the new solution (d/dl; +1;)0
has the eigenvalue A±2. Consider the lowest-order solution exp(-X2/2), with
A = 1. This has the lowest possible negative curvature in the range where
A - 62 is positive, and hence the lowest possible value of A. The next solution
obtained by operating with the raising operator, (d/d6 - 6)
-21; exp(-X2/2), has two extrema. Each successive application produces
one more extremum. Hence we collect all possible solutions by successive
application of the raising operator. The mth eigenvalue Am is given by
A,,,, = 2(m + 1/2).

Conversely, operation by the lowering operator produces a lower-order
solution from a higher-order one by "climbing down" the eigenvalue "ladder"
in increments of 2, producing a solution on one "lower rung" of the "ladder".
The solutions of (A.2.1) for the different discrete eigenvalues are the Hermite
Gaussians.

A.2.2 Orthogonality Property of Hermite Gaussian Modes

The Hermite Gaussians are orthogonal in the sense that [194,195]

oo

dY m(S)Yn(S) = 0
-00

(A.2.6)

if m n. To show this we use their defining equation (A.2.1):
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d2cbm + Amcbm - b20m = 0 , (A.2.7)

where

m = (A.2.8)

Multiplying (A.2.7) by On and subtracting (A.2.7) applied to On multiplied
by g5rn, we find

(Am - An) J O nOn d = f
d n - qn

aa
J

d f = 0 ,

(A.2.9)

because 0,,, and on vanish at = ±oo. Thus the orthogonality condition

00

-00
(A.2.10)

is obeyed when

A,n54 An.

Further, note that (A.2.8) introduced into (A.2.7) leads to the differential
equation obeyed by the Hermite polynomials:

d2Hm dHm
d2 - 2,

d
+ 2mH,n = 0. (A.2.11)

A.2.3 The Generating Function and Convolutions
of Hermite Gaussians

The generating function of the Hermite Gaussians On(S) is (as we prove
below)

ff ( C fF(x, S) = exp 1 - s2 + 2se - S2 ) _
00

Sn
12

n=O
n.

n=0

(A.2.12)

The Hermite Gaussians are the "coefficients" of the Taylor expansion in s
of F(x, ). Comparison of the two sides of (A.2.12) for s = 0 gives 0o(6) =
exp(-X2/2). We shall now show, through application of the lowering operator
9/0 + 6 to both sides of (A.2.12), that all terms in the series are solutions
of (A.2.1). We obtain
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a °O

E
Sn+1

C
a

+ F(s, ) = 2sF(s, ) = 2
n! On (0

n=0

00 n

+) On
n=O

(A.2.13)

where we have differentiated the exponential function F(s, ) directly, observ-
ing that the operator a/t3 + operating on F(s, ) is equivalent to multipli-
cation by 2s. Then we replace F(s, ) by its defining expansion, and finally
equate the result to the operation of a/a + on the defining expansion. By
comparing equal powers of s, we obtain

(d + 2(n+ 1)0n(e) . (A.2.14)

The lowering operator transforms the (n+1)th function into the nth
function On(e). Because the function q5 is a simple Gaussian, the func-
tion 01(x) must be the first higher-order solution of the differential equation
(A.2.1). The remaining eigenfunctions along the "ladder" may be identified
by induction.

We may use the generating function to evaluate On(S) -
Expanding F(s, ) in powers of its exponent in s, and equating terms in
(A.2.12), we have

Ho(e)=1,

2e ,

H2(e) = -2.

(A.2.15)

(A.2.16)

(A.2.17)

The three lowest-order Hermite Gaussians are shown in Fig. A.M.
The generating function can be used to relate dHn/dC to Hn_1. This

is accomplished by taking a derivative with respect to of (A.2.12) and
rewriting the result, (2s - C)F(s, ), in terms of the defining sums. Equating
terms of the same powers of s, we obtain

d
H. = 2nHn_1 (A.2.18)d .

If we differentiate the above and use the differential equation obeyed by Hn
(A.2.11) and (A.2.18) to eliminate the derivatives, we obtain the recursion
formula

Hn+1 - 2CHn. + 2nHn_1 = 0 . (A.2.19)
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2.0 m=2

1.0 M=1

m=0

Fig. A.2.2. The three lowest order Hermite Gaussians

Another very important use of the generating function is evaluation of
convolutions and Fourier transforms of eigenfunctions lbn(c). Consider first
the Fourier transform of the Taylor expansion of the generating function:

00 n

1
s Hn(S)e_s2/2eikQd

27r n-0 n!

27r - exp I - s2 + 2s - 22 + d

27r J
exp - 22 + (2s + ik) - 2 (2s + ik)2 d

-,,. (

The integral evaluates to 27r and we recognize the factor in the last expres-
sion to be the generating function F(is, k). Thus

2Hn( )e
,2/21

n
= 1

Oc'

(n! Hn(k)e-k2/2 (A.2.20)F.T.
L
E
00-0 2 n=0 n.

The Fourier transform of is (1/ 2ir)in times the same function
of k. Next, consider the convolution of On (0 with the Gaussian exp(-<2/2) :



A.2 Hermite Gaussians 511

00
s

Y

n

roo
//, {{
n(So)e-(a/2)n-On.

= I deaexp I -s2+2sCo- 2° - 2(,-eo)2J
00 L

d o exp
+12 +2 s a1 2 a220(+ 2 Jo- a+l (s+ 2/

J

(' a-1 2 a-1 a, a 2x exp I - (s a+l) +2I s +l a2-1 2(a+1) ]

(A.2.21)

In the first step we convolve the entire series of functions equate
them to the convolution of the generating function, and then evaluate the
convolution of the latter by completion of the square. The integral evaluates
to 27r/(a + 1). The remaining exponential factor is the generating function
of a Hermite Gaussian. Equating the first expression in (A.2.21) to the last
one expanded as a series of functions On, we obtain

00 n 00

E
s fn. 00n=O

2,r °O 1 - / aae2
a2-1)exp[2(a2-1)

Term-by-term identification gives

00

n (So)e-(a/2)

-00

27r a - 1 n/2
a aS t2

+1(a+1) n( a2-1)exp(2(a2-1)J .

(A.2.22)

(A.2.23)

Note that the square root in the argument of On has to be interpreted so as
to yield solutions decaying with increasing This same interpretation has
to be given to

a-1 a-1
a+1 a2-1

Finally, consider the product of two generating functions for the purpose
of evaluating the normalization integral:
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e92+zs£-f2/2e-n2+zP£-C2/zg

00

00 00 Smpn 00
//C 2

= Y' ni
Hm(S)Hn( )e-

.

-00

(A.2.24)

The left-hand side is easily evaluated to give
n/e2sp =

2sp
(A.2.25)Y /' nn

If equal powers of s and p are equated after substitution of the value of the
integral (A.2.25) into (A.2.24), we obtain

00

2nn! , (A.2.26)
-00

and the orthogonality condition for m 54 n,
00

-00
0 . (A.2.27)

A.3 Recursion Relations of Bessel Functions

Given a function Z(x) that is a linear superposition of a Bessel function and
a Neumann function of order p, then the following recursion formula holds:

dZ ((x) _ -PZZ(x) + Zp-i(x) . (A.3.1)

If we apply this formula to the Bessel function of zeroth order, we obtain

do
=J0(x)=-Ji(x). (A.3.2)

A modified Bessel function of zeroth order is an ordinary Bessel (or Neumann)
function of imaginary argument. Thus, we have

dK° = idZ°(ix)
= (-iZ (i (x))) = K 3)(A 3i .i x

dx d(ix)

The functions of first order give respectively

..

() + J )(i = --J 4)3(Aox x ,i
dx

..

dZi(ix) 1 Z (i Z) ) 5)3(Aoxi x ,+
d(ix) ix

and therefore

..

dK
i =-xK (x)( )+K 6)3(A1 ox ..
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A.4 Brief Review of Statistical Function Theory

A brief account is given here of the concepts of spectral density and auto-
correlation function for stationary statistical time functions. Stationary sta-
tistical time functions that obey the ergodic theorem are particularly simple
to analyze. The ergodic theorem states that averages over time of these sta-
tistical functions are equal to averages over an ensemble of such functions.
A consequence of the ergodic theorem is that one may collect an ensemble
of such functions from one single source by collecting samples over a suffi-
ciently long (ideally infinitely long) time interval. In order to analyze them
it is convenient to treat them as if they were periodic with a period T. For
such an analysis a Fourier series is convenient. Thus, consider the statistical
time function f (t). It has associated with it the Fourier transform

1 T/2

fn =
/

dt f (t) exp(iw t) , (A.4.1)
T

T/2

where wn = (2ir/T)n and n is an integer. The inverse Fourier transform is

f (t) = fn exp(-iwnt) . (A.4.2)
n

The limit T -+ oo is implied throughout. We allow for complex functions, such
as the amplitude envelopes of signals with a given carrier frequency. Consider
the ensemble average of the "power" associated with f (t), indicated by angle
brackets:

1 f
J

T/2
dt (If (t)12)"power" =

T
T/2

1 T/2

=
T

dt (fnfm) exp[i(wm - wn)tl .
M ,n -T/2

(A.4.3)

For a stationary function, the power cannot depend on time. We thus have
for a stationary function

(fnfm) = (I JmI2)bmn , (A.4.4)

where bmn is the Kronecker delta. Thus, continuing with (A.4.3), we have

T/2
"power" = 1

dt
(If(t)12)T -T/2
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I

I
T/2

_ dt (fnfm) exp[i(wm - wn)t1
M ,n J-T/2

I

-

T/2

dt(IfI)- T T/2

_(IfmI2) _ i T
2,r T

m m

(A.4.5)

The last expression can be transformed into an integral in the limit of infinite
T, because then the Fourier components become infinitely closely spaced,
27r/T = Aw -> dw. We find

"power" _ T 2 (IfmI2) = f
m o0

where b(w) is the spectral density, defined by

O(w) = lim I (IfmI2)]

(A.4.6)

(A.4.7)

The integral of the spectral density gives the power of the statistical process.
The autocorrelation function is defined by

(f*(t)f(t - r)) = Rf(T) . (A.4.8)

For a stationary process the autocorrelation function is a function only of
the time shift T. It is related to the spectral density:

R1(r) _ (f *(t) f (t - T)) _ >(fn fm) exp(iwnt) exp[-iwm(t - T)]
m,n

(IfmI2) eXp(1WmT) _ T
27r T

2 (IfmI2) exp(iwmT)
M m

= fdw(w)exp(iwr).
(A.4.9)

The autocorrelation function is the Fourier transform of the power spectral
density.
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A.5 The Different Normalizations of Field Amplitudes
and of Annihilation Operators

In this book we use several different normalizations for the complex mode am-
plitudes in the classical domain and for creation and annihilation operators in
the quantum domain. This appendix summarizes the different normalizations
and reviews the motivations for their choice.

A.5.1 Normalization of Classical Field Amplitudes

Statistical mechanics assigns an energy of (1/2)k9 to the excitation energy
of every degree of freedom at equilibrium at temperature 0. An electromag-
netic, acoustic, or mechanical vibrational mode has two degrees of freedom,
and hence possesses an energy with expectation value W. Hence, in the anal-
ysis of systems at thermodynamic equilibrium it makes sense to define mode
amplitudes Am whose square is equal to the energy in a transmission medium
of length L, so that their excitation energy at temperature B is equal to W.
Since equilibrium conditions are stationary, and the energy cannot vary with
time, the expectation values of different mode amplitudes are uncorrelated:

(AmA*n) = k68nm, . (A.5.1)

The length L, taken as very large (ideally infinitely long), should not enter
into the evaluation of relevant physical quantities. Hence, it is desirable to
normalize the amplitudes so that the length does not appear explicitly in the
answers. The length L defines the spacing of the propagation constants of the
modes, LX/3 = 2,7r/L. We choose renormalized variables a(/3) such that their
integrals evaluate to the energy per unit length:

An
A- = fd/3fd/3a*(/3)a(/31)). (A.5.2)

n,m j'

The expectation value is

(a(N)a* (N')) =
k8

J(/3 -,3

In problems involving the excitation of linear multiports, equal frequencies
couple to each other, not equal propagation constants. Thus, it is more ap-
propriate to use amplitudes a(w) assigned to frequency intervals zlw, rather
than a(O) assigned to propagation-constant intervals. Further, the quantity
of interest is power flow in a frequency interval Au):

(a(w)a*(w')),6wLw' =
kO

8(w - w')zAwzAw' -
k-nw

. (A.5.4)
27r 27r

The amplitude a(w) is related to a(/3) by
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(A.5.5)

Finally, we introduced another normalization of the complex mode ampli-
tude, namely a without parentheses, which simplified the analysis of noise in
multiports. The fact that excitations at different frequencies were uncorre-
lated was subsumed, and the amplitudes were written so that jal2 was equal
to the power within the frequency increment Aw:

(aa*) = 2Oaw (A.5.6)

The relationships among the different amplitudes may be gleaned from these
equilibrium relations. We have

21r(a(0)a*(0))zA0 = 27r(a(w)a*(w))aw = 27r(aa*)/zAw = IA,,12 , (A.5.7)

and thus

27r 2,7r
a(/3) =

L/vy
a(w) = L/va = An . (A.5.8)

A.5.2 Normalization of Quantum Operators

In the quantum analysis, the definition of the operators follows closely the
renormalizations of the classical amplitudes. In the quantum analysis we do
not deal with energies, but rather with photon numbers, which are related to
the energies through division by hwo. Further, the commutator brackets play
a similar role to the equipartition theorem in classical statistical mechanics
at thermal equilibrium. In this spirit, the above relations can be rewritten
using commutator brackets instead:

[Am, AtI = anm , (A.5.9)

and, for the commutator defined per unit length,

[a(Q), at (a')] =
21r

s( - ) (A.5.10)

The power flow becomes a commutator flow. Here we have taken two ap-
proaches. We noted that a linear multiport excited by incoming waves couples
waves of equal frequencies, not of equal propagation constants. The quantum
operators are related in a similar way to (A.5.8):

a(/3) =
27r

a(w) = L/v9a = An . (A.5.11)

The different renormalized operators are related to each other in the same
way as their classical excitation amplitudes. With regard to (A.5.11), note
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should be taken of the fact that the characterization is still in terms of prop-
agation constants; the only change is that the interval designation a/3 has
been replaced by Aw/v9. This is a departure from the classical analogy. Clas-
sically, the frequency spectrum is the transform of the time dependence of an
excitation. In quantum theory, on the other hand, the evolution of operators
(in the Heisenberg representation) or states (in the Schrodinger representa-
tion) occurs in time; a wavepacket with a certain time dependence in the
classical sense is described as a superposition of mode excitations in the /3
representation. This representation can be Fourier transformed into the x
representation, thus preserving the special role of the time variable in the
Heisenberg equation. We have, instead of (A.5.10),

[a(x), atW)] = 6(x - x') . (A.5.12)

The creation operator at (x) generates a photon in the spatial interval ,Ax.

A.6 Two Alternative Expressions for the Nyquist Source

We found that a termination impedance Z at thermal equilibrium has an
associated noise source

(IE312) = 4Re(Z)kOB . (A.6.1)

In the wave formalism, the wave source delivers a power (1 - I1'12)kOB.
Clearly, the two results must be consistent. In this appendix we derive (A.6.1)
using the expressions for the power of the wave source. The wave source is a
composite of a voltage source E and a current source J that is fully correlated
with E and equal to YoE. The source s is related to E and J by

K E

The mean square value of E is thus

(jE12)=Zo(1-1112)kOB=Z,, ( - Z - Zo
Z +Zo

(A.6.2)

kGB . (A.6.3)
2)

Next, consider the equivalent voltage source in series with Z. The wave
generator consists of a current source in parallel and a voltage source in series,
as shown in Fig. A.6.1. These can be converted into a single voltage source
in series using the Thevenin equivalent, as shown in Fig. A.6.2. Hence, the
equivalent noise source in series with the impedance has the mean square
value

E5=E+ZJ=E(1+Z) . (A.6.4)
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Fig. A.6.1. Representation of wave generator

ZJ

Fig. A.6.2. Conversion of termination

Its mean square value is

IE., 12
= IEI2

z
1 + Zo

- E5+

Zo Z -Z-

2

= 4 Re(Z) kOB ,

Z - Zo
Z +Zo

which agrees with the alternative derivation.

2)
kOB

A.7 Wave Functions and Operators
in the n Representation

1+Z
2

(A.6.5)

It is convenient to express the wave functions and the operators defined in
the text in the number state representation. Thus, a general state of an
electromagnetic field is given by

1,0) _ Ec,,In) ,

n

(A.7.1)

where the In) are photon number states in Dirac notation. The cn are complex
coefficients. In particular, we have introduced the coherent state for which
the cn are given by

Cn
e-1a12/2

n!

The identity operator is clearly

I=>'In)(nI.
n

(A.7.2)

(A.7.3)

Indeed, operation of the identity operator on a state leaves the state invariant:



A.7 The n Representation 519

III) = j In)(nl >cm.Im) = EcnIn) = IV)) .

n in n

(A.7.4)

The number state operator is given by

n = nln)(nI . (A.7.5)
n

The expectation value of the number operator is the average photon number:

(V)InIV)) _ cn(nI 1: mlm)(ml Ecplp) _ >nlcn12 = (n) . (A.7.6)
n m p n

We see that the coefficients Icnl function as probabilities. Next, we consider
the annihilation operator. This is

A=E n+1In)(n+11. (A.7.7)
n

This operator, operating on a state la), gives

Ala)=E n+lln)(n+lIj:e-«2,2Im)
n mn

= aEe a2/2 In) = ala) .

n V n.

m.

(A.7.8)

Hence, the coherent state is indeed an eigenstate of the annihilation operator.
Carruthers and Nieto [197] have introduced operators that can be viewed

as cosine and sine operators. Let us start with their definition and then show
the plausibility of this identification. The operators are

C-1 1 A+ At 12\ n+1 n+l (A.7.9)

2i(
n1+lA-At nl+l) (A.7.10)

These are Hermitian operators. The inverse square root of the operator
n + 1 is interpreted in terms of a Taylor expansion in powers of n + 1. Note
that the classical interpretation of n -+1 .:: is the amplitude of an a
state. Hence, if we interpreted the annihilation and creation amplitudes as
complex phasors, we would interpret (A.7.9) and (A.7.10) as the cosine and
sine. The operators (A.7.9) and (A.7.10) have simple appearances in the
number representation. The operator (1/ n -+1)A is simply

n1+lA=EIn)(n+11.
n

(A.7.11)
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The cosine and sine operators are thus

l
C= 21 In)(n+11 I ,

\ n n //

S 2i(EIn)(n+11-EIn+1)(nj
n n

(A.7.12)

(A.7.13)

The commutators of these operators with the number state operator are
of interest. For this purpose, let us look at the commutator of En In) (n + 11
with n. We have

[n, E In) (n + 11]
n

_ nIn) (nI Im) (m + 11 - E Im) (m + 1I nIn) (nI
n m m n

=1: nlrn)(n+11 -E(m+1)Im)(m+11
n m

=-1: In)(n+1I.
n

In a similar way, we find

[n,IIn+1)(nl]
n

_ E In)(nI E Im + 1)(mI
n m

=Ejn)(n+1I.
n

In this way we find

[n, C] = -iS

and

EIm+1)(ml nIn)(nI
m n

(A.7.14)

(A.7.15)

(A.7.16)

(A.7.17)

The cosine and sine operators are referred to the real and imaginary axes in
the complex phasor plane. It is often convenient to pick operators referenced
to a particular a state so that their expectation values yield the in-phase and
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quadrature components of the a state. Suppose that the a state has phase
i.e. arg(a) = 0. We may define

C(¢) = C cos 0 +S sin 0 (A.7.18a)

and

S(O) = S cos q5 - O sin 0 . (A.7.18b)

These new operators have the same commutation relations as the original
ones. They are referred to the phase 0. Let us consider the expectation values
of the operators for an a state with arg[a] = 0. We have

(aIC(O)ja) = (ajC cos 0 + S sin 01a)

1

2
jO

*n m m
_ e1a12/2

a
In)

n n,
+1 I

m m

(a + a*) cos - i(a - a*) sin
e_Ia'2

10,12

2 n n _+1 n!

_ e-(n) (n)n _ /

' n+1 n! - IaIC

n1+1

- lal'n

(A.7.19)

The expectation value of the operator is equal to the product of the square
root of the average photon number and the average of 1/ (n- + 1). For a large
photon number, the product approaches unity. The relative mean square fluc-
tuations approach zero, as we now proceed to show. The analysis is simplified
if we set the argument of a equal to zero, treating a as a real number and
setting 0 = 0. Then

(a1C21a) = 1 e-IaI2/2
on

(nl4 n

x
Cm m
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X (1: Ip)(p+11+EIp+141 1:e 1.12/2
ogq7Iq)

P P q

1 a2 a2m a2

2e ryn! ( +1)(m+2)

2 (1 + (n) (
(n + l)(n + 2)

The mean square fluctuations are

(aIC2Ia) - (aICIa)2 =
2

1 (1 + (n)
(n -1- 1)1 (n + 2)

1

C

n+1>2

If we expand the fractions and square roots, we find that

(aI02Ia) - (aICa)2
1 1

4 (n)

(A.7.20)

(A. 7.21)

(A.7.22)

The fluctuations are small compared with unity for large photon numbers.
When an operator acquires mean square deviations much smaller than its
expectation value, it can be replaced approximately by a c number. Thus,
we may introduce an approximate operator applicable to coherent states and
states that have a large photon number and a relatively small spread of phase.
If we consider an a state with a small phase 0, then the commutation relation

(A.7.23)

can be approximated by

[n, S(O)] = i , (A.7.24)

with C(O) replaced by unity. The approximate operator S(O), obeying the
commutation relation (A.7.24) and usually denoted by the operator symbol
0, is Heitler's phase operator. It is applicable to states of large photon number
for which a probabilistic phase distribution can be defined unequivocally.
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A.8 Heisenberg's Uncertainty Principle

The Heisenberg uncertainty principle applies to the mean square fluctuations
of two noncommuting observables. If two observables are represented by the
operators A and B and the commutator of the two operators is a c number
iC, where C is real,

[A, f3] = iC , (A.8.1)

then the mean square fluctuations (DA2) and (,AB') obey the inequality

(4A2)(,,jB2) > C2 . (A.8.2)

The proof of this relation proceeds as follows. We first introduce the Schwarz
inequality. Consider two states lu) and lv). Any state has a real, nonnegative
norm,

(ul u) > 0 . (A.8.3)

The scalar product of lu) with lv) is the complex conjugate of the scalar
product in reverse order:

NO _ (vlu)* .

From these properties follows the inequality

I(uIv)I2 < (ulu)(vly)

(A.8.4)

(A.8.5)

Now, define the deviation operators a and b by a = A - (A) and 6 = B - (B).
Then the new operators obey the commutations relation

[a, 6] = iC. (A.8.6)

The mean square fluctuations are (DA2) = (a2) and (62). If the
state of the system is 1W), then aIW) is a new state lu) and bjW) is a new state
lv). Using the Schwarz inequality, we obtain

(ulu)(vIv) ? l(ulv)IZ = I(Wla6iW)12 . (A.8.7)

Here we have used the fact that a and b are Hermitian operators. Now,
separate the operator product bb into Hermitian and anti-Hermitian parts:

ab = 2 (ab + ba) + 2 (ab - ba) = Z (a6 + ba) +
i2

. (A.8.8)

Decompose (WlablW) = (ulv) into real and imaginary parts:

iC
(Wla6IW) = 2 (Wla6 + 6a1W) + . (A.8.9)
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Rewriting the Schwarz inequality, we obtain:

(Ia21)(Ib21) > \
ab2bal\2 1412

(A.8.lo)

and, of course, even more strongly,

(A.8.11)

This is Heisenberg's uncertainty principle. If a state IW) is prepared, then
measurements of A on an ensemble of identically prepared states and mea-
surements of b on another ensemble of similarly prepared states yield a
scatter of data that obeys the inequality (A.8.11). If it is found that the in-
equality is obeyed with the equality sign, the corresponding states are called
minimum-uncertainty states.

A.9 The Quantized Open-Resonator Equations

In Sect. 6.5 we showed how the decay rate of an open resonator can be evalu-
ated from the coupling of the resonator to the modes of a waveguide, ideally
infinitely long. The coupling of the waveguide modes back into the resonator
accounted for the Langevin noise sources that maintain the commutator of
the resonator mode amplitude.

The formalism can be carried further to derive the full quantum equations
of the open resonator We note that (6.90), repeated below,

dT = -iTe iKV, (A.9.1)

contains the information on the excitation of the resonator by the waveguide
modes incident upon the resonator in the sum >, Kj V3. This excitation
is caused by the traveling-wave component a of the standing-wave modes
propagating in the direction of the resonator. Power conservation arguments,
as presented in Sect. 2.12, identify this component with 21Tea(t):

f dw
e-twta(w)

, (A.9.2)

where we have adhered to the assumption that all coupling coefficients are
imaginary and equal.

The identification (A.9.2) can be checked by evaluating the commutators.
We have for the commutator of the left hand side:
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k j'k =IKI2 j + T'k
j k

= IKI21` v9 1

The commutator of the right-hand side is

Te L J

=
2 1 [fdwJd'(w_w')]
re 27r

/' 1 -v91f7r1Te

band 7rTe k Te L k

(A.9.3)

(A.9.4)

where Lw = vy7r/L is the frequency separation of the modes. The commuta-
tors indeed agree. Hence, we find that (A.9.1) can be cast into the form

dt
(,w" e) U Ta(t) (A.9.5)

the form which is derived in (6.12) as a result of the quantization of the clas-
sical open-resonator equation. Next consider the excitation of the waveguide
by the resonator. From (6.84) we have

dVj
V UK

dt
a= -1wj j - 3 . (A.9.6)

From this equation it follows that the resonator excites the superposition of
modes

V(U)
KU -K*U

j
1 fj

.

wj _W cwj wj - w
(A.9.7)

This superposition of modes forms a traveling wave propagating away from
the resonator, a wave b(U) that, in accordance with (A.9.2), is related toj .(U) by

-i K! Vj(U)
2

Jwetw)Te
(A.9.8)

From (A.9.8) and (A.9.7) we find
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t IM[w] w - plane

x

(a)

Re[w]

t IM[w] w - plane

x 1 Re[w]

(b)

Fig. A.9.1. Contour in complex w plane: (a) for real excitation frequency; (b) for
complex frequency

V

f dw e-iwtb(U) (w) _ -i 'V(U) = -iK*2
U

Te 7 7 Wj

(A.9.9)

^J i
1

II
f dwj

lrTe
J

W j - W

Again, we face an integral expressing a summation over all the modes. It
looks like the integral that led to (6.88). However, there is a subtle difference.
Equation (6.88) is a determinantal equation derived for a superposition of
waveguide modes, all excited at a real frequency. The contour of the integral
passes around the pole in a semicircle, as shown in Fig. A.9.1. The side on
which the pole is passed is determined by the fact that a Laplace transform
starts in the upper half of the complex w plane and the pole reaches the real
axis from above. The integral (A.9.9) is written for the complex frequency
at which the resonator mode decays. The pole moves through the real axis
into the lower half-plane and is fully encircled by the contour. This gives an
additional factor of 2, so that we obtain

J dwj
= 27ri

Wj-W
(A.9.10)

Combining (A.9.9) and (A.9.10), we find for the wave emitted by the res-
onator

f dw e-iWtb(°)(w) = b(U) (t) = - U .

VVV Te
(A.9.11)
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In the absence of the resonator, the boundary condition on the standing-
wave waveguide modes of a magnetic short at the reference plane imposes
the constraint b = a. The presence of the resonator changes this relation to

r
VVVVV Te

(A.9.12)

Equations (A.9.5) and (A.9.11) are the quantum equivalents of the classical
equations of the open resonator that were derived from time reversal and
energy conservation. The sign change is the result of redefinition of the refer-
ence plane in the waveguide. A quarter-wave shift of the reference plane and
a redefinition of the phase of (J establishes full correspondence.

A.10 Density Matrix and Characteristic Functions

Any state of the electromagnetic field can be described by a superposition of
photon number states

IW) = E cnIn). (A.10.1)

n

Equation (A.10.1) is a so-called pure state, if the complex numbers cn are
all specifiable. If the process under consideration is a member of a statistical
ensemble, then the system cannot be in a single pure state. To express such
a statistical superposition, the density matrix is used. It is defined as a sum
of the operators I n) (m I

p=1: c;,,cnln)(mI , (A.10.2)
m,n

where cmcn are the statistically averaged products of the coefficients. When
the coefficients are independent

CmCn = ICn I2bmn i

and the density matrix simplifies to

ICn12In)(n1 .
n

(A.10.3)

(A.10.4)

The trace of the density operator is unity

Tr(P) = E ICnI2 = 1 . (A.10.5)
n

The coefficients IcnI2 may be interpreted as probabilities. But even in the
general case of a nondiagonal density matrix, the expectation value of an
operator is the trace of the product of the density matrix with the operator:



528 Appendices

(O) = E(mlc* 6 E cnln) = Tr (,O) . (A.10.6)
m m

Thermal equilibrium is represented by a density matrix that is diagonal in the
photon number representation because thermal equilibrium is fully described
by the probability distribution of the system's energy (e.g. photon number).

Even if the process is not a statistical one, the density matrix formulation
may be preferred to the description of a quantum process in terms of state
amplitudes c,,,, since it removes an arbitrary phase of the state, which has no
physical meaning (say the phase of c0, all other phases being referred to that
of c0).

Equation (A.10.6) illustrates the fact that quantum theory contains, in
general, two "averaging" operations: one is with respect to the quantum
states; the other is with respect to the statistical ensemble representing the
process.

The definition of the density matrix is analogous to the way correla-
tion matrices are defined classically. Thus, if the Eti denotes amplitudes of
noise voltages as in Chap. 5, the correlation matrix is defined as EjEj*. The
overbar indicates a statistical average. Taking a single number state as an
example, one may define its density matrix as In)lcnl2(nl. If the state is
made up of a statistical superposition of number states, its density matrix
is p = jn)cnc(mI, where we indicate the statistical average by an overbar
to distinguish it from the quantum evaluation of an expectation value. The
matrix c,,,c,* is in complete analogy with the correlation matrix.

A.10.1 Example 1. Density Matrix of Bose-Einstein State

A Bose-Einstein state has the density matrix p = jn)cnc,*n(mj with

1( )

( (n)
)

n

1+ n 1+(n) bnm

The correlation matrix is diagonal, since the excitations of different photon
number states are statistically independent.

A.10.2 Example 2. Density Matrix of Coherent State

A coherent state is a deterministic superposition of number states and hence
a statistical average is not taken. The "correlation matrix" is not diagonal
and is of the form (note the absence of statistical averaging)

ana*m
cncn = exp(-jaj2)

nom!

Figure A.10.1 shows the amplitude of this matrix versus n and m for
VaJ2 = (n) = 100 and for a real and positive.
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Fig. A.10.1. Amplitude of density matrix of coherent state

A.11 Photon States and Beam Splitters

The quantum properties of a beam splitter emerge clearly when both its
inputs are in photon states. Here we go through the analysis of such an
excitation. The Hamiltonian of a beam splitter can be written in the form
(compare (7.12))

ft = ,(MAtB +M*BtA) + 2h,w . (A.11.1)

The equation of motion of the wave function (0(t)) is

(A.11.2)

The solution of this equation, when integrated over the time T during which
the wavepacket interacts with the beam splitter, is

IV)(T)) = exp[-i(MTAtB + M*TBtA)]Ib(0)) . (A.11.3)

Now suppose that the input is in the state I(0)) = I1)I1). The output
can be evaluated by expanding the exponential in (A.11.3) and evaluating
the operation of the operator (MTAtB + M*TBtA)n on the wave function.
Clearly,

(MTAtB + M*TBtA)I1)I1) =./(MTI2)10) + M*TIO)I2))

= 2IMIT (e'OI2)I0) + e
`0I0)I2))

,

(A.11.4)

where 0 = arg(M). The next operation gives
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(MTAff3 + M*TBtA)v(MTI2)I0) + M*TIO)I2)) = 41MT1211)I1) .

(A.11.5)

An operation by an odd power 2m + 1 of the operator produces the wave
function (1/v1r2_)(e'0I2)I0) + e-''I0)I2)) with a multiplier (2IMTI)2m+i, and
an operation by an even power 2m produces (2IMTI)2,11)I1). The result is
thus

exp[-i(MTAfb + M*TBtA)]I1)I1)

= cos(2IMIT)I1)I1) +sin(2IMIT) (e'OI2)I0) +e-1OI0)I2))

(A.11.6)

The beam splitter is a 50/50 beam splitter when 2IMIT = ir/2. Then
the passage through the beam splitter produces the superposition state
1/v(e'0I2)I0) + e-'0I0)I2)). This means that both photons emerge in ei-
ther one output port or the other output port, with a probability of one-half.
The photons, so to speak, "stick together". In the analysis of a beam splitter
illuminated by one photon in one of the inputs we found that the beam split-
ter sends the photon into either one of the two output ports with a binomial
probability distribution. What is new here is the simultaneous arrival of two
photons at both inputs. Whereas one may say that each photon exits with a
probability of one-half, the two photons always exit in pairs.

A.12 The Baker-Hausdorff Theorem

A.12.1 Theorem 1

Denote by A and B two noncommuting operators that satisfy the condition

[A, [A, B]] _ [B, [A, B]] = 0. (A.12.1)

If is a c number, the following relationship holds:

B + [A, B] . (A.12.2)

The proof of the theorem is as follows. Define the function h(l;) as

e£ABe-£A (A.12.3)

Now, differentiate with respect to

dh _ e£ABAeCA = [A f3] . (A.12.4),

dt;

Since h(0) = B, we have, after integrating (A.12.4),

B + e[A, i3] . (A.12.5)

This completes the proof.
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A.12.2 Theorem 2

If the operators A and B satisfy (A.12.1) and t; is a c number, the following
relationship holds:

exp (t;(A+ B)) exp ((e2/2)[A, B]) = e£AeCB (A.12.6)

For the proof, define the function

f ( ) = (A.12.7)

If we differentiate with respect to 1=, we obtain the result

f = Ae6Ae£B + (A + f (A.12.8)

where we have used the fact that exp(-1;A) exp(l;A) = I. Because of (A.12.2)
we have

i3+ , [A, B] . (A.12.9)

Thus (A.12.8) can be rewritten as

d
f = {(A + B) + [A, B]} f (e) . (A.12.10)

Since, according to (A.12.1), A and B commute with [A, B], the variable
A + B can be treated as a c number and the integration can proceed in the
standard way. Since f (0) = 1, we obtain after integration

f ee +B)e(EZ/2)[A,B] = (A.12.11)

This is the desired result. These proofs follow derivations by Glauber as
presented by Louisell [65].

Thus far the Baker-Hausdorff theorems have been stated for "scalar"
operators, as contrasted with the column matrix operators a and at used in
the text. The Baker-Hausdorff Theorem 2 is used for the derivation of the
characteristic function of an observable. The generalization to the column
matrix case adapts the theorem for use in the derivation of the characteristic
function of a set of observables collected in a column matrix. We proceed as
follows:

A.12.3 Matrix Form of Theorem 1

The operators Ati and E3 are assumed to have the commutator

[Ai, BJ] = i3 (A.12.12)
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where both Ai and Bj commute with D. The matrix form of theorem 1 states
that if the Si are a column matrix of c numbers the following relationship
holds:

exp (> eiAi) Bj exp (- E ekAk) = Bj + Ss [Ai, Bj] (A.12.13)
i k

The proof of the theorem starts with the definition of the functions

hj(Si) = exp (>&iAi)Bj exp (- Z;kAk)
k

Differentiate hj(l;i) with respect to 1;,,,,. The result is

ahj (Si) = exp 0i) AmEj exp (- GAk)
i k

- exp 0i) Bj A,, eXp (- > ek Ak )
k

= exp eiAi) [Am, Bj] exp (- 6kAk)
k

(A.12.14)

(A.12.15)

=[Am,Bj]

But the integral of (A.12.15), with the constraint that Bj for all
Si = 0, is (A.12.13), which completes the proof.

A.12.4 Matrix Form of Theorem 2

If the operators Ai and Bi satisfy (A.12.12) and the Si are all c numbers, the
following relationship holds:

exp i(Ai+Bi)) exp
1

(2 E
j,k

= exp iAi) exp jBj)
i j

(A.12.16)

For the proof, define the function

.f (Si) = exp (E iAi) exp (E 0j) (A.12.17)
j

Differentiation with respect to Sk gives
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6k
f (Si) = Ak exp SiAi) exp ( n3)

i j

+ exp (> Ai) exp (> jBj)Bk

_ [Ak+exP(>2iAi

x exp (E 0i) exp

Bk exp (- E6m Am) ]
m

= { Ak + Bk + > m [Am, Ba] } f (Si)
m

= (Ak + Bk + E mDmi) f (Si)
m

(A.12.18)

where we have used the fact that exp(- >j jAj) exp(>i CA) = I, the
identity, and we have employed (A.12.13). Since the Ai and Bi commute
with their commutator, the differential equation (A.12.18) can be treated as
a c-number differential equation. The value of f is 1 when all i = 0, and
thus the integral is

f exp (1: .k (Ak + Bk)) exp

(2

[Aj, Bk]) . (A.12.19)
k j,k

This completes the proof of theorem 2 in matrix form.

A.13 The Wigner Function of Position and Momentum

In the text we deal with characteristic functions of observables and their
Fourier transforms. The Fourier transforms of characteristic functions become
probability distributions in the classical regime. In the quantum domain, the
Fourier transforms of characteristic functions of noncommuting observables
may acquire negative values, and thus cannot be interpreted as probabil-
ity distributions. They are related to a function introduced by Wigner in
1932 [198]. Here we start with the characteristic function of position and
momentum and show how the Wigner function is obtained from it.

Consider the characteristic function of momentum and position for the
state IV/)):



534 Appendices

C' (S1, 6) = (I exp(1C14 + iC2p)I)

(A.13.1)
= fdq(IexP@+i)I).

The Baker-Hausdorff theorem allows us to write this in the form

C(e1, C2) = exp 5 - 2 [iC14, i 2p]
1
f dq (')I exp(if14) exp(i&) I' )

l (A.13.2)

The exponential exp(iCi4) can be treated as a c number in the space of 4. The
operator exp(i&) = exp(WO/aq) operating on the wave function following
it produces a displacement:

C(e1, S2) = exp ( 1 2IL2) f dq0* (q)V)(q + h 2) exp(i6lq) . (A.13.3)

Fourier transformation with respect to 1 gives

- f dC1 fdqexp(_ieix)c(ei,e2)

= 2-
fdi f dqexp [iCi(q - x + X22

)]*(q)(q + 42)

= f dg6(q-x+-2 p*(q)V)(q+he2)

V)*f h22) p x+ 2

The second integration yields the Wigner function:

2

W(x's)
=

(-27rj
) dCi f <2eXp(-i ix-k2s)C(S1,S2)

=
27r

d6 exp(-i6s)O* (x - 26 (x + 26

(A.13.4)

(A.13.5)

As an example, take the wave function

1
V (x) =A' Lexp ((x 2a)2

/
f exp ((x

a2a)2 ) I (A.13.6)

where N is a normalization constant. This wave function leads to the Wigner
distribution
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(a)

(c)

(b)

(d)

Fig. A.13.1. The Wigner function (A.13.7) (a) for + sign; (b) cross section of (a)
at y = 0; (c) for - sign; (d) cross section of (c) at y = 0

W (x, s) oc exp (
012) Eexp

( (x 92a)2 + exp I - (x a2a)2 I

2

±2cos(2a)exp \- °2/J
(A.13.7)

with y - s/Ti. This function is plotted in Fig. A.13.1 for a = a, for both
signs. This Wigner function exhibits negative values.

A.14 The Spectrum of Non-Return-to-Zero Messages

Non-return-to-zero (NRZ) digital transmission is now widely used. It is the
encoding employed in the new "repeaterless" transoceanic links. Ideally, the
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signal consists of rectangular pulses of width To and height A, representing
"ones", and of "zero" intervals of the same width. If two pulses follow each
other they form a rectangle of twice the width. Hence the name "non-return-
to-zero". Here we wish to evaluate the spectrum of the function

f (t) _ p(r)h(t - tr) , (A.14.1)
r

where p(r) is the probability weighting function of the occurrence of a pulse at
time tr; p(r) assumes the values 0 and 1 with probability 1/2 each, the usual
choice. The time instants tr can be taken as the positions of the leading edge
of the rectangle. The autocorrelation function of (f (t) f (t - r)) is obtained
very similarly to the method employed in Sect. 4.2. The product of the two
sums is written as a double sum. Then the terms involving the same event
are grouped in one sum, and the terms representing products due to two
different events are grouped in another sum.

(M), At - 7-))

h(t - tr)h(t - T - tr,) ) + K E h(t - tr') E h(t - tr) )
\r=r l/ r r r 54r' /

_ > p(r)h(t - tr)h(t - T - tr')
r=r'

+ p(r)h(t - tr') p(r)h(t - tr)
r' :Ar r#r'

(A.14.2)

where the last expression takes advantage of the independence of events,
making an average of a product into the product of the averages.

For the evaluation of the averages, it is helpful to visualize the functions.
Consider the first term and pick one of the terms in the sum assigned to the
time instant tr. The individual terms are still functions of t and T. Figure
A. 14.1 illustrates the function in the t - T plane. As the pulse is moved over
by T the overlap becomes smaller and the rectangle representing the product
becomes narrower, going to zero width when T = To. The statistical average
can be supplemented by a time average. We have
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t-tr -
Fig. A.14.1. The function h(t - tr)h(t - tr - T)

\\ T/2
h(t - tr)h(t - T - tr')

1

) _ dtp(r)h(t - tr)h(t - T - tr,)
\ r-r' // T T/2

1A2To ITI for ITI <ToTo

0 forITI>To
(A. 14.3)

where A is the amplitude of the rectangle. The averages in the second term
can also be evaluated by time integrals of the individual factors:

T/2

= A r,, T = 1A. (A.14.4)
-r. 2T jdt>P(r)h(t-tr)

This process has not excluded terms with r = r'. The error decreases to zero
as the time interval T is taken infinitely long.

We thus obtain for the correlation function

(f (t)f (t - T)) = A2 (
2

1

T °

To17-1

+ 1

,

(A.14.5)

for I T I < To and (f (t) f (t - T)) = -A2 for Ti I> To. Fourier transformation
gives us the spectrum
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1
J

d r (f (t) f (t - rr)) exp(-iWT)
21r

=A22LJ dTexp(-iwT)
\1ToT ITI +40

1 T0A2 1 - cos(WT0) + 1 A2b(w)
27r W 2To 4

The spectrum is illustrated in Fig. A.14.2.

Fig. A.14.2. A plot of the first term in (A.14.6), [1 - cos(WT)]/(wro)2

A.15 Various Transforms of Hyperbolic Secants

(A.14.6)

The hyperbolic secant plays an important role in the perturbation analysis
of soliton propagation. For this reason it is useful to have a compendium of
mathematical relations for the hyperbolic secant and its powers.

We start with the Fourier transform of sech t,

F.T. (sech t) = jdtetsecht. (A.15.1)

This Fourier transform can be evaluated with the help of the residue theorem.
The hyperbolic secant turns into a secant for imaginary values of the argu-
ment. The secant has an infinite set of poles. In particular, on the positive
imaginary axis in the complex (2 plane, the poles are at t = i[(2n + 1)/2]ir.
The cosh function is expanded as follows:

cosh(i2n2 17r + At) = cos (2rc2 17r +
t

_ (-1)"+i
t

. (A.15.2)
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This expansion gives poles in the integral of (A.15.1) with the residues equal
to i(-1)"1 exp {-[(2n + 1)/2]irQ}. The infinite integral can be closed in the
upper half-plane, picking up the integrals around each of the poles. Thus

F.T. (sech t) = F-00 dt e'stsech t

00 +_ E(-1)"+121ri l i exp
(_ 2n2 1

Jo L

= exp (-
2

Q) (-1)"`2ir exp(-n-7rQ)
0

= 27reXp[-(7r/2)Q] _ 7r sech
.r,f2

1 + exp[-(Q) 2 )

(A.15.3)

The Fourier transform of the sech function is a sech function. The Fourier
transform of the sech-squared function can be evaluated in the same way. The
square now introduces second-order poles. The function multiplying 1/ate
must be expanded to first order in ,At. Thus the behavior of the kernel near
the nth pole is

ate exp (- 2n2 1 rQ) (1 + iQ At) . (A.15.4)

The integration around each pole gives

-27ri(i,f2) exp (-
2n2 1 7r,(2)

= 21r,f2 exp - 2n2 1 7rQ) . (A.15.5)

The summation over all contour integrals gives

F.T. (sech2 t) = exp (_?) > 2-7rQ exp(-n7rQ)
o

_ exp (-7r,fl/2) 7rQ

exp(-7rQ/2) sinh(7r,f2/2)

(A.15.6)

The Fourier transforms evaluated at Q = 0 give the integrals of the functions
over all t:

00

dt sech t = 7r
-00

(A.15.7)

and
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Fourier Transforms of Interest

Function: Fourier Transform Defined by Jdt f(t) e1°t

sec h (t) it sec h(2 Q)

tanh (t) sec h (t) Qn sec h(2 Q)

tanh2(t) sech (t) Q)(1-Q2)n sech(
22

tanh3 (t) sec h (t) A(5-Q2), sech (2 Q)

lsec h3 (t)
/

(1+Q2)n sechl Ql
2

tanh (t) sec h3 (t) (1+Q2)n sech(2Ql

6

tsech(t) Q) sech( Q)i 2 tanh(2
2 2

t tanh (t) sec h (t) it sec hl 2 Q I - Q 2 tanh(2 Q) sechl 2 Q)

t tanh2(t) sech (t) iQt sech(2Q)+i 4 (1-Q2) tanh(2Q)sech(2Q)

t tanh3(t) sech (t) 1(5-3122), sech( Q'sechl Q'1f2) 2
6

(5-Q2) tanh( 2
2 2

1t tanh(t)sech3(t) z (1+a2)tanh(2Q)sech(
2 Q)

S s

t sac 0 (t) 12-(1+ Q2) tanh(-kQ sech(!.Q +i Q l sech( Q I
)

2
2 24

tanh2 (t) sec h3 (t) (1+ Q2) (3-Q2) n sech(2Q2
)

4

sec h5 (t)
ll

(Q2 + 1) (Q2 + 9)n sech(2 Q I4 2

Table A.15.1. Fourier transforms of interest
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J
oo

dt sech2 t = 2 .

-00

This latter integral is, of course, simply evaluated by noting that

d tanh t = sech2 t .

(A.15.8)

(A.15.9)

Another useful integral is obtained from the Fourier transform of sech2 t:

d2 irf2
CO t2dt sech2 t =

2

-
dQ2 (sinh(1rQ/2)) n-o -f 00 6

Table A.15.1 lists some other useful Fourier transforms.

(A.15.10)

A.16 The Noise Sources Derived
from a Lossless Multiport with Suppressed Terminals

A lossless quantum mechanical 2N-port is derivable from a Hamiltonian.
Commutator brackets are preserved and hence no noise sources are needed.
When information on N of the ports is suppressed, and their excitation is
via zero-point fluctuations, the network does not preserve power, and N in-
dependent noise sources are introduced, whose states are in the ground state.
It is of interest to follow through the analysis of such "suppression". The
2N-port is described by the scattering process

rbs l = ISss S. 1 ra3 1 (A.16.1)
IL bn J Sns Snn J IL an J

We use the subscript "s" to denote the signal part of the network and the
subscript "n" for the part of the network to be suppressed and thus respon-
sible for the noise sources. After suppression of the "n" network, we obtain
for the "s" network

bs = Sssas + Ss, where s, = Ssnan . (A.16.2)

We have found noise sources. The commutators of the noise sources are

ssl = [Ssnan, antSsn] - 4 Ssn Ssn (A.16.3)

Conservation of power requires the scattering matrix to be unitary. Thus, we
find

Ss5Sss + SsnSsn = 1 . (A.16.4)

We then find from (A.16.3), (A.16.4), and (A.16.5)
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t`g91'S9]
zA

S.,n -,97L AW (1 - . "St,) (A.16.5)

This is the proper commutator relation for the noise sources of the N-port.
Hence, we have shown that the noise sources which provide commutator
conservation for a non-Hamiltonian system originate, ultimately, from an
incomplete description of the network under consideration.

A.17 The Noise Sources of an Active System
Derived from Suppression of Ports

A parametric amplifier is an example of an active quantum mechanical four-
port, resulting from the coupling of a signal wave to an idler wave as described
in Sect. 10.2. Instead of one signal wave and one idler wave, one may couple
N signal waves to N idler waves and obtain a 2N-port. N ports are excited
by signal waves, and N ports are excited by idler waves. If all the idler waves
are in the ground state, the noise of the amplifier is at its minimum. In matrix
notation,

b=set,

where the S matrix is of rank 2N,

S99 S9ti
QS
29 SE2

(A.17.1)

(A.17.2)

and the submatrices are of rank N. The input and output excitation column
matrices consist of annihilation operators for the signal channels, and creation
operators for the idler channels:

b = and a = f l
bi L a'i J

(A.17.3)

Suppose we suppress the "unexcited" idler ports and write an equation for
the signal ports alone. This results in an N-port with gain, and with noise
sources:

b9 = S99a9 + SSiaz = "-'994'9 + S9, with ss = Ssiai , (A.17.4)

where s, must now be interpreted as a noise source column matrix. This
equation is indistinguishable from that of a simple multiport amplifier. Its
noise sources must obey the commutator relation

`'g9f ss] = (1 - SSSSss) (A.17.5)
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in order to conserve commutator brackets. It is easily shown that this commu-
tator relation indeed holds. The parametric amplifier generates signal photons
and idler photons in pairs. This "conservation" principle is encapsulated in
the matrix equation

StPS = SPSt = P,
where

0]P=[10
-1

We thus have

S33S3S - S82S32 = 1

From (A.17.4) we find that

t t zAW
[S9138 _ [S88Cl2 S8'd

a'9.,
2ir SSZS88

(A.17.6)

(A.17.7)

(A.17.8)

Combining (A.17.8) and (A.17.7), we prove the commutator relation (A.17.5).
Thus, we have shown in one special case how the noise sources of an ampli-
fier can be derived from a Hamiltonian description of a parametric amplifier
system in which information on the idler channels is suppressed. The deriva-
tion also shows that the noise sources associated with annihilation operator
excitations of an amplifier are formed from creation operators.

A.18 The Translation Operator and the Transformation
of Coherent States from the,3 Representation
to the x Representation

The vacuum state in the 0 representation is a product state fJj I0)j, where the
subscript j indicates the vacuum states pertaining to different propagation
constants O j. A superposition of coherent states is given by the following (the
Einstein summation convention is used):

) = exp(akA' + a*Ak) fl I0)i
i

(A.18.1)

Now consider the transition from the 0 representation to the x representa-
tion. First of all we note that the ground state is invariant under the trans-
formation. Next we note that the Fourier transform exp(i/jxk)Aj yields the
annihilation operator &(xk) = exp(i,0jxk)Aj in the x representation or, con-
versely, that the annihilation operator in the /3 representation can be written

Ai = exp(-i,0jxk)a(xk) . (A.18.2)
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When we introduce (A.18.2) into (A.18.1) we find

ITI) = exp[exp(-i,3jxk)a*a(xk) +exp(i,3jxk)ajat(xk)] 11 JO)j . (A.18.3)

We have obtained a new translation operator which shifts every vacuum state
to an excitation I exp(-i,3jxk)aj). The excitation of the coherent state has
transferred its spatial dependence to the coherent states in the x representa-
tion.

Acknowledgment. The above derivation is the result of very helpful
discussions with Dr. F. X. Kartner.

A.19 The Heisenberg Equation in the Presence
of Dispersion

In evaluating the Heisenberg equation of motion for the annihilation operator,
one must evaluate the commutator [(aatlax) (aa/ax),a]. This is done most
simply by interpreting the commutator as follows (this approach was pointed
out to the author by Dr. F.X. Kartner):

aat as _ aa(y)
[ y--1x,z x ax ay ' a(z)j

= _
y-x,zx ax ay [at(x)a(y)"a(z)]

lim L S(x - Z) aa(y)1
y--x, z-a x y

2 l
lim

I
aaaya(y)S(x - z)J

y-*x,z-rx

02
_ x2 &(x)6(0).

A.20 Gaussian Distributions and Their e-1/2 Loci

(A.19.1)

Zero point fluctuations lead to amplitude distributions that are Gaussian.
A general, two-dimensional Gaussian distribution of two random variables x
and y can be written compactly as

p(x, y) = N exp (xtAx) , (A.20.1)
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where

x=I
Y

A is a positive definite symmetric matrix of second rank, and N is a nor-
malizing factor. The matrix A contains the information on the mean square
spread of the variables x and y. When A is diagonal, the 1/e locus of the
probability distribution is an ellipse with its major and minor axes along the
x and y axes. Consider the characteristic function, defined as the Fourier
transform of the probability distribution:

iny77) = fdxfdyp(x,y)e+. (A.20.2)

An expansion of the characteristic function in powers of and y gives the
moments of the probability distribution, as follows:

77) = Y f dx f dyp(x,
y)xmyn (iS) mm(l,7)n

!n!m,n

/lt)m(ly)n_
Mmn

m! n!m,n

(A.20.3)

where M,,,m = f dx f dy p(x, y)xmyn is the moment of mnth order.
A Fourier transform of a Gaussian is also a Gaussian. Thus, for the prob-

ability distribution (A.20.1), the characteristic function is of the form

Mexp (_1B) with (A.20.4)

where M is another normalization factor and B is the inverse of A. To prove
this last assertion, let us introduce the unitary transformation U that casts
the matrix A into diagonal form:

UAUt = D. (A.20.5)

Such a transformation is a rotation, with

U=
cos /3 sin /3

- sin /3 cos /3

It is clear that the matrix D contains the squares of the inverse lengths of
the major and minor axes of the 1/e locus of the probability distribution,
which we denote by ox and oy:

[1/0,2
0

D = (A.20.6)
0 1/oy
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The Fourier transformation is carried out particularly simply in the diagonal
form. We use the fact that UtU = UUt = 1. Then we may write

C(e, rl) = f dx f dyp(x,

N f dxf dy exp HXtUtUAUtUx)

Nf dx f dyexp (-ZxtUtDUx
(A.20.7)

= N f dx' f dy' exp (_x'tDx1) exp(ix't ') ,

where x' = Ux and ' = U are the components in the new, rotated coor-
dinate system. With a diagonal matrix, the Fourier transformation is easily
seen to give

77) = N f dx' f dy' exp I - 2 x'tDx' I exp(ix't')

oc exp (_1tD_1'/2) = exp (_tUfD_1U) (A.20.8)

= exp (_tA_1) = exp (_tB)

Thus we have shown that the matrix B in the characteristic function is the
inverse of the matrix A in the probability distribution. The quadratic term
in the expansion of the characteristic function obtained from (A.20.8) yields
the second-order moments, according to (A.20.3):

BXXS2 +
Byyij2

= 012X + 2a 2'07 + Uyy77 2 . (A.20.9)

Thus, we find that the matrix B contains the mean square deviations as its
matrix elements.

The rotation introduced earlier is useful in determining parameters of the
e1/2 ellipse. Indeed, rotation of the coordinates into the major and minor
axes of the ellipse gives for its area

area = a ay , (A.20.10)

which is equal to the product of the two eigenvalues of the matrix B. Since
eigenvalues are invariant under rotation, the area of the ellipse can be com-
puted for any arbitrary orientation:

area = product of eigenvalues . (A.20.11)
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Now, the eigenvalues of the matrix B are

2 2 (OxX 2 2 2

A f = xx
2

ayy ±
2

yy
)

+ Qyy (A.20.12)

The product of the eigenvalues is

area = a+A_ = a2xgyy - Qyy (A.20.13)

We may now confirm that the area of the fluctuation ellipse remains invariant
in the process of squeezing. We have from (13.86), (13.87), and (13.88)

axx = (dAi(0))

01yy = (oA2(o)) + (A.20.14)

aXy = Ai(0))

We find from (A.20.13) and (A.20.14)

area = (z1A1(0))(AA2(0)) . (A.20.15)
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- of an N-port, 162
energy
- conservation, 355

as it affects coupling coefficients, 88
- law, 16

- density
- in the electric field, 17

-- stored, 20
- imparted to polarization, 17

stored in the electric field, 17
- stored in the magnetic field, 17
- theorem, 59
- velocity, 59

- of waveguide mode, 59
ensemble, 208
- average, 159, 303, 513, 601
entangled state, 260, 487, 495
- Schrodinger formulation, 248, 251,

264
equivalent circuit(s)
- for modes of driven cavity, 74
erbium-doped amplifiers, 365
evolution of
- momentum, 465
- phase, 465
- photon number, 465
- position, 465
excess noise figure, 179, 184, 273, 333
exchangeable power, 175, 333
- from a source, 159
- gain, 177, 183
external Q, 82

Fabry-Perot resonator, 84, 100, 105
falling factorial moment, 306
- generating function, 307
Faraday's law, 11
feedback, 169
fiber
- communications, 226, 276, 345
- core, 106
- dispersion, 349

- index nonlinear, 346
field effect transistor (FET), 167
field pattern of TM modes, 50
filtered shot noise, 131
first order soliton, 348
fluctuations
- of photon number of laser, 403
four-wave mixing, 118, 347
Fourier
- series, 129, 513
- transform pairs, 230
- transformation, 259
- - of characteristic function, 259
free space propagation, 100

gain
- available, 179
- quantum theory of, 268
- saturation, 379, 398
gate
- capacitance of FET, 167
- conductance of FET, 167
Gaussian
- amplitude distribution of thermal

excitations, 153
- beam, 105, 136
-- radius, 103

distribution, 257, 258, 392, 544
probability distribution, 466

generating function, 305
Gordon, J. P., 4
Gordon-Haus effect, 4, 346, 357, 369
group
- delay, 123, 571
- velocity, 60
-- of Gaussian beam, 505

- dispersion (GVD), 111, 115, 348,
360

- of waveguide mode, 60
Guided acoustic wave brillouin

scattering (GAWBS), 434

Hamiltonian, 384, 390
- (of pulse propagation), 423
- of dispersive waveguide, 446
- of four-wave mixing, 419
- of harmonic oscillator, 198, 203
-- in terms of creation and annihilation

operators, 201
- of mirror, 245
- of QND measurement, 475

quantized of harmonic oscillator, 199
harmonic oscillator, 71, 151, 198
- quantum theory of, 198
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Hasegawa, A., 3
HE modes, 109
Heisenberg
- equation of motion, 216
- formulation of lossless multiports,

248
- uncertainty principle, 209, 523
- uncertainty relation, 480
Helmholtz equation, 41, 48
Hermite Gaussian
- beams, 99
Hermite Gaussians, 105, 201, 506
- convolution, 508, 510
- defining equations, 506
- Fourier transform, 510
- generating function, 508
- orthogonality, 507, 512
Hermite polynomial, 508
Hermitian
- conjugate, 246
-- operation, 206

matrices, 164
- tensor, 31
heterodyne
- detection, 285, 290, 298

classical treatment, 282
- linearized analysis of, 292

of multimodal signal, 295
with finite detector response time,
296

receiver, 301, 599
homodyne

detection, 287, 294, 395, 462
-- of squeezed vacuum, 393

detector, 299
hyperbolic secants, transforms, 538

ideal detector, 282
idler
- channel, 294, 385
- frequency, 381, 387
- photons, 382
image
- charges in electrodes, 130
- in heterodyne detection, 293
impedance
- matrix, description of multiterminal

network, 77
- representation, 170
impulse response, 297, 403
- function, 404
inductance per unit length L, 47
information and negentropy, 330

intensity modulation, 503
interference term, see also coherence

term of amplified photon flow, 324
interferometer
- Mach-Zehnder, 302, 427, 600
inversion
- of population, 398
- parameter x, 224, 321, 329

junction field effect transistor (JFET),
185

Kerr
effect, 3, 99, 347
J., 3

- nonlinearity, 349

Lagrange multiplier, 151
Laguerre polynomial, 320
Langevin noise source, 144, 163
Langevin sources, 214
laser
- below threshold, 229
- resonator above threshold, 398
linear
- lossless multiports, in classical and

quantum domains, 243
- noisy multiports, 157
- noisy twoports, 157
- polarization, 119, 367
- transformation, 305
linearly polarized (LP) approach, 99
local oscillator, 283, 462
Lorentz gauge, 102
loss
- of a single mode fiber, 100
- reservoir, 312
lossless
- embedding, 169, 274
- medium, 31, 48
- resonator, noise of, 140
lossy
- linear multiports at thermal

equilibrium, 146
- resonator, noise of, 143
lowering operator, 507
LP analysis, 111

Mach-Zehnder interferometer, 302,
427, 600

magic T, 286
magnetic
- energy density, 30
- field, 11
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- transverse and longitudinal
components, 42

flux density, 11
- susceptibility tensor, 25
Manakov (soliton), 370
Manley-Rowe relations, 381
matrix
- characeristic noise, 160
- Hermitian, 164
- impedance, 77
- scattering, 244
Maxwell's equations
- complex, 23
mean square fluctuations, 310
measurement of (soliton) operators, 461
minimum uncertainty state, 426, 437,

471
mode
- expansions, 56
- orthogonality, 67
modes
- EH, 109
- HE, 109
- TE, 56
- TM, 49, 56
moment generation function, 305
momentum (of wave), 382
momentum operator, 451

negative definite matrix, 274
negentropy, 330
noise, 1
- enhancement factor X, 321, 329, 413,

613
- figure, 158

definition of IEEE, 8, 333
- excess, 179, 184, 273

of amplifier, 176
- of FET, 193, 580
- - of optical amplifiers, 333
- in a fiber with loss compensated by

gain, 226
- measure, 158

allowed ranges of, 361
of amplifier, 175
of FET, 193, 580
optimum value, 179

- of a lossless resonator, 140
- of lossy resonator, 143
- shot, 128, 134
- thermal, 136
noise figure
- excess, 333

non-return-to-zero
- spectrum, 346, 535
nondegenerate parametric amplifier,

386
nonlinear
- Schrodinger equation, 346, 348
- waveguide, quantization of, 418
normal order (of operators), 208
NRZ signals, 375
number of modes per volume, 155, 577
Nyquist
- formula, 139
- function, 421
- source, 517
- theorem, 139, 141

Ohm's law, 15
open
- cavity, 74
- resonator, quantized, 211, 524
optical
- beams in free space, 99
- digital communications, 314
- fibers, 99
- preamplification vs direct detection,

342, 605
optimum noise measure of quantum

network, 272
optimum noise performance, realization

of, 185
orthogonality of modes, 70
- eigensolutions, 70
output photon number of amplifier, 271

parametric
- amplification, 380
-- quantum analysis, 383
- amplifier, 380
parametrically driven system, 355
paraxial
- wave equation, 103
parity matrix, 385
permeability, 40
- tensor, 14
perturbation theory, 62, 84, 113, 347
- of solitons, 354
phase
- insensitive amplifier, 386
- matching, 382
- measurement, 436

- with solitons, 462
with squeezed vacuum, 395

- operator, 451
- sensitive measurement, 294
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- velocity, 39, 505
-- of Gaussian beam, 505
phasor plane, 426
photon

- eigenstate, 312

- flow rate, 229, 235
- number operator, 207, 451
- number operator (for parametric

process), 385
- statistics, 312
photons
- interpretation of, 288
- probability distribution at thermal

equilibrium, 150
piecewise uniform dielectric, modes of,

106
Planck's constant, 2
Planck's formula, 156, 578
plane waves, 41, 103, 112, 120
plasma, 32
Poisson
- brackets, 198

- distribution, 135, 308, 460
Poissonian distribution, 313
polarization
- of solitons, 367
population
- of lower level, 398
- of upper level, 398
position operator, 451
power
- of waveguide mode, 59
- orthogonality, 52
- spectral densities, 154, 514
- spectrum, 128, 146, 154
- velocity
- - of waveguide mode, 59
Poynting

theorem, 15
- - complex, 28
- differential form of, 29
- vector, 30
probability
- distribution of amplitude of thermal

excitation, 152
- distributions, 256
-- coherent state, 256
- generation function, 307

- for amplifier output photons, 317
of amplifier output photons, 315

product solution, 47
projection postulate, von Neumann,

473, 491

pump depletion, 382

QND measurement
- of photon number, 475, 476
quadrature operator, 217, 219, 225
quality factor Q
- external, 82
- loaded, 82
- unloaded, 81, 82
quantization of electromagnetic field,

198
quantized nonlinear Schrodinger

equation, 449
quantum
- efficiency, 281, 282, 300
- nondemolition (QND) measurement,

475
- theory

- imperfectly inverted amplifier
medium, 223

-- of balanced heterodyne detection,
290

-- of passive and active multiports,
267
of waveguide with loss, 217

radius of curvature of phase front, 103
raising operator, 507
Rayleigh-Jeans law, 155, 577
realization of optimum noise perfor-

mance, 185
reciprocal multiports, 83
reciprocity
- symmetry of scattering matrix, 244
- theorem, 33
reduced density matrix, 487, 488, 496
reflection coefficient, 52, 87
renormalization
- of creation and annihilation

operators, 242
- of soliton operators, 457
repeaterless transoceanic fiber cables,

99
resonator with two inputs, 94, 562
- quantum fluctuations, 238, 587
resonators, 39
return-to-zero (RZ), 302, 599
reversibility
- of Maxwell's equations, 15
- time, 25
rising factorial moment, 306, 314
- generating function, 307

Sagnac loop, 433
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scalar potential, 102
scattering matrix
- of mirror, 244
- representation, 172
Schawlow-Townes linewidth, 8, 406
Schottky, 2
Schrodinger

- cat, 493
- cat state, 263, 499
- - generation of, 440
- equation, 103
-- nonlinear, 346

formulation of lossless multiports,
248

- representation, 197
Schwarz inequality, 210, 523
self-adjointness, 355
Shannon formula, 331
shot noise
- classical treatment, 282
- formula, 296
- limit, 397
- probability distribution of, 134
- spectrum of, 128
signal
- channel, 384
- frequency, 281, 381, 387, 412
signal-to-noise ratio (SNR), 177, 397
- of heterodyne detection, 294
simultaneous
- diagonalization of two Hermitian

matrices, 164
- measurement

- of two noncommuting variables, 271
- measurement of two noncommuting

observables, 298
sine operator, 519
single-mode fibers, 109
solenoidal modes, 65, 70, 72, 74
solitary wave, 352
soliton, 352
- attraction, 363
- fiber communications, 349
- modifier, 461
- perturbation, continuum generation,

370
- propagation in fibers, 367, 445
- squeezing, 465
solitons
- properties of, 352
spectral
- density, 514
- representation in 3 space, 242

spontaneous emission, 152, 221
squeezed
- radiation from an ideal laser, 408
- state, 120, 380, 392, 396
- vacuum, 392
-- generation with nonlinear interfer-

ometer, 427
squeezing
- experiment, 432
- in fiber, 424
standard quantum limit, 380
stationarity of statistical process, 137
stationary
- function, 513
- process, 138, 210
statistical function theory, 513
statistics
- of attenuation, 311
- of optical preamplification with

incomplete inversion, 320
- of optical preamplification, with

perfect inversion, 314
- of photons, 312
- Poissonian coherent state, 256
steady state, 215, 282, 398
step index fiber, 107
sub-Poissonian (fluctuations), 411
sub-shot noise measurements, 435
susceptibility tensor, 31, 32
symmetric (Fabry-Perot) resonator,

105
symmetry off tensor, 17

TE modes, 56
TE waves, 99
TEM waves, 44
tensor
- dielectric, 14
tensor notation, 14
thermal noise, in waveguides, 136
time
- reversal, 84, 527
- reversibility, 25
TM mode
- eigenvalue equation, 48
- modes, 49, 56
- waves, 54, 99
transmission
- line equations, 47
- resonator, 88, 231
transverse

electric (TE) modes, 53
-- waves, 53

magnetic (TM)
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field, 49, 56, 76
modes, 47

-- waves, 47

uncertainty
- ellipse, 465
- principle, 209, 523
uniqueness theorem, 22
unloaded Q, 87

vacuum fluctuations, 207
vector
- identities, 35, 555
- potential, 101
- Poynting, 16
voltage of TEM wave, 44
von Neumann postulate, 473, 491

wave equation, 45
waveguides, 39
- homogeneous isotropic, 39
wavelength-division-multiplexed

(WDM) communications, 351, 364
Wigner

distribution, 259
-- of degenerately amplified signal,

392
- function, 7
-- of coherent state, 261

- of Schrodinger cat, 263
-- position and momentum, 533

zero-point fluctuations, 225, 228, 237,
289, 400
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